Promising Anti-Inflammatory Species from the Lecythidaceae Family: An Integrative Review
Abstract
1. Introduction
2. Materials and Methods
2.1. Formulation of the Research Question
2.2. Inclusion and Exclusion Criteria
2.3. Search Strategy
2.4. Study Selection
2.5. Data Extraction and Presentation
3. Results and Discussion
3.1. In Vitro Anti-Inflammatory Activity
3.2. Anti-Inflammatory and Antinociceptive Activity In Vivo
3.3. Randomized Trials
3.4. Action Mechanisms and Inflammatory Pathways
3.5. Ethnopharmacological Uses
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abdulkhaleq, L.A.; Assi, M.A.; Abdullah, R.; Zamri-Saad, M.; Taufiq-Yap, Y.H.; Hezmee, M.N.M. The crucial roles of inflammatory mediators in inflammation: A review. Vet. World. 2018, 11, 627–635. [Google Scholar] [CrossRef]
- Patil, K.R.; Patil, C.R. Anti-inflammatory activity of bartogenic acid containing fraction of fruits of Barringtonia racemosa Roxb. in acute and chronic animal models of inflammation. J. Tradit. Complement. Med. 2017, 7, 86–93. [Google Scholar] [CrossRef]
- Batlouni, M. Anti-inflamatórios não esteroides: Efeitos cardiovasculares, cérebro-vasculares e renais [Nonsteroidal anti-inflammatory drugs: Cardiovascular, cerebrovascular and renal effects]. Arq. Bras. Cardiol. 2010, 94, 556–563. [Google Scholar] [CrossRef]
- Begum, R.; Sharma, M.; Pillai, K.K.; Aeri, V.; Sheliya, M.A. Inhibitory effect of Careya arborea on inflammatory biomarkers in carrageenan-induced inflammation. Pharm. Biol. 2015, 53, 437–445. [Google Scholar] [CrossRef]
- Begum, R.; Sheliyab, M.A.; Mirc, S.R.; Singhd, E.; Sharmab, M. Inhibition of proinflammatory mediators by coumaroyl lupendioic acid, a new cutan-type triterpene from Careya arborea, on inflammation-induced animal model. J. Ethnopharmacol. 2017, 206, 376–392. [Google Scholar] [CrossRef] [PubMed]
- Lima-Junior, L.J.A.C.; Costa, G.C.; Reis, A.S.; Bezerra, J.L.; Patrício, F.J.B.; Silva, L.A.; Amaral, F.M.M.; Nascimento, F.R.F. Inhibition of in vitro macrophage infection by Leishmania amazonensis by extract and fractions from Chenopodium ambrosioides L. Ciênc. Saúde 2014, 16, 46–53. Available online: https://periodicoseletronicos.ufma.br/index.php/rcisaude/article/view/3410 (accessed on 12 May 2025).
- Patil, K.R.; Patil, C.R.; Jadhav, R.B.; Mahajan, V.K.; Patil, P.R.; Gaikwad, P.S. Anti-Arthritic Activity of Bartogenic Acid Isolated from Fruits of Barringtonia racemosa Roxb. (Lecythidaceae). Evid. Based Complement. Alternat Med. 2011, 2011, 785245. [Google Scholar] [CrossRef] [PubMed]
- Kong, K.W.; Mat-Junit, S.; Ismail, A.; Aminudin, N.; Abdul-Aziz, A. Polyphenols in Barringtonia racemosa and their protection against oxidation of LDL, serum and haemoglobin. Food Chem. 2014, 146, 85–93. [Google Scholar] [CrossRef]
- Ferreira, É.L.d.F.; Oliveira, J.P.d.C.; de Araújo, M.R.S.; Rai, M.; Chaves, M.H. Phytochemical profile and ethnopharmacological applications of Lecythidaceae: An overview. J. Ethnopharmacol. 2021, 274, 114049. [Google Scholar] [CrossRef]
- Costa, D.C.M.; Azevedo, M.M.B.; Silva, D.O.E.; Romanos, M.T.V.; Souto-Padrón, T.C.B.S.; Alviano, C.S.; Alviano, D.S. In vitro anti-MRSA activity of Couroupita guianensis extract and its component Tryptanthrin. Nat. Prod. Res. 2017, 31, 2077–2080. [Google Scholar] [CrossRef]
- Whittemore, R.; Knafl, K. The integrative review: Updated methodology. J. Adv. Nurs. 2005, 52, 546–553. [Google Scholar] [CrossRef] [PubMed]
- Souza, M.T.; Silva, M.D.; Carvalho, R. Revisão integrativa: O que é e como fazer? Einstein 2010, 8, 102–106. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, 71. [Google Scholar] [CrossRef]
- Santos, C.M.d.C.; Pimenta, C.A.d.M.; Nobre, M.R. The PICO strategy for the research question construction and evidence search. Rev. Lat. Am. Enfermagem 2007, 15, 508–511. [Google Scholar] [CrossRef]
- Ouzzani, M.; Hammady, H.; Fedorowicz, Z.; Elmagarmid, A. Rayyan—A web and mobile app for systematic reviews. Syst. Rev. 2016, 5, 210. [Google Scholar] [CrossRef]
- Kelaidi, N.; Dimopoulou, K.; Dimopoulou, D.; Krikri, A.; Siouli, C.; Berikopoulou, M.M.; Zavras, N.; Dimopoulou, A. Entero-Enteric Fistula Following Multiple Magnet Ingestion in Children: A Systematic Review. J. Clin. Med. 2025, 14, 6235. [Google Scholar] [CrossRef] [PubMed]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; The PRISMA Group. Reprint-Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. Phys. Ther. 2009, 89, 873–880. [Google Scholar] [CrossRef]
- Jo, M.; Lee, J.; Kim, H.G.; Kim, J.K.; Kim, H.; Shin, K.K.; Bach, T.T.; Eum, S.M.; Lee, J.S.; Choung, E.S.; et al. Anti-inflammatory effect of Barringtonia angusta methanol extract is mediated by targeting of Src in the NF-κB signalling pathway. Pharm. Biol. 2021, 59, 799–810. [Google Scholar] [CrossRef]
- Ha, A.T.; Kim, M.Y.; Cho, J.Y. TAK1/AP-1-Targeted Anti-Inflammatory Effects of Barringtonia augusta Methanol Extract. Molecules 2021, 26, 3053. [Google Scholar] [CrossRef]
- Sitohang, N.A.; Putra, E.D.L.; Kamil, H.; Musman, M. Acceleration of wound healing by topical application of gel formulation of Barringtonia racemosa (L.) Spreng kernel extract. F1000Research 2022, 11, 191. [Google Scholar] [CrossRef] [PubMed]
- Shikha, P.; Latha, P.G.; Suja, S.R.; Anuja, G.I.; Shyamal, S.; Shine, V.J.; Sini, S.; Krishnakumar, N.M.; Rajasekharan, S. Anti-inflammatory and analgesic activity of Barringtonia racemosa Roxb. Fruits. Indian. J. Nat. Prod. Resour. 2010, 1, 356–361. [Google Scholar]
- Osman, N.I.; Sidik, N.J.; Awal, A.; Adam, N.A.M.; Rezali, N.I. In Vitro xanthine oxidase and albumin denaturation inhibition assay of Barringtonia racemosa L. and total phenolic content analysis for potential anti-inflammatory use in gouty arthritis. J. Intercult. Ethnopharmacol. 2016, 5, 343–349. [Google Scholar] [CrossRef]
- Deraniyagala, S.A.; Ratnasooriya, W.D.; Goonasekara, C.L. Antinociceptive effect and toxicological study of the aqueous bark extract of Barringtonia racemosa on rats. J. Ethnopharmacol. 2003, 86, 21–26. [Google Scholar] [CrossRef]
- Behbahani, M.; Ali, A.M.; Muse, R.; Mohd, N.B. Antioxidant and anti-inflammatory activities of leaves of Barringtonia racemosa. J. Med. Plants Res. 2007, 95–102. [Google Scholar]
- Vien, L.T.; Van, Q.T.T.; Hanh, T.T.H.; Huong, P.T.T.; Thuy, N.T.K.; Cuong, N.T.; Dang, N.H.; Thanh, N.V.; Cuong, N.X.; Nam, N.H.; et al. Flavonoid glycosides from Barringtonia acutangula. Bioorg. Med. Chem. Lett. 2017, 27, 3776–3781. [Google Scholar] [CrossRef] [PubMed]
- Imam, Z.M.; Sultana, S.; Akter, S. Antinociceptive, antidiarrheal, and neuropharmacological activities of Barringtonia acutangula. Pharm. Biol. 2012, 50, 1078–1084. [Google Scholar] [CrossRef] [PubMed]
- Thirumal, M.; Bharathi, R.V.; Kumudhaveni, B.; Kishore, G. Anti-arthritic activity of the chloroform extract of Barringtonia acutangula (L.) Gaertn. leaves on wister rats. Scholars Research Library. Pharm. Lett. 2013, 5, 374–380. [Google Scholar]
- Quader, S.H.; Islam, S.U.L.; Saifullah, A.; Majumder, F.U.; Hannan, J. Evaluation of the Anti-Nociceptive and Anti-Inflammatory Activities of the Ethanolic Extract of Barringtonia acutangula Linn. (Lecythidaceae) Roots. Int. J. Pharm. Sci. Rev. Res. 2013, 20, 24–32. [Google Scholar]
- Vien, L.T.; Hanh, T.T.H.; Quang, T.H.; Thao, D.T.; Cuong, N.T.; Cuong, N.X.; Nam, N.H.; Van Minh, C. Acylated flavonoid glycosides from Barringtonia pendula and their inhibition on lipopolysaccharide-induced nitric oxide production in RAW264.7 cells. Fitoterapia 2023, 171, 105699. [Google Scholar] [CrossRef] [PubMed]
- Cury, M.F.R.; Olivares, E.Q.; Garcia, R.C.; Toledo, G.Q.; Anselmo, N.A.; Paskakulis, L.C.; Botelho, F.F.R.; Carvalho, N.Z.; Silva, A.A.D.; Agren, C.; et al. Inflammation and kidney injury attenuated by prior intake of Brazil nuts in the process of ischemia and reperfusion. J. Bras. Nefrol. 2018, 40, 312–318. [Google Scholar] [CrossRef]
- Anselmo, N.A.; Paskakulis, L.C.; Garcias, R.C.; Botelho, F.F.R.; Toledo, G.Q.; Cury, M.F.R.; Carvalho, N.Z.; Mendes, G.E.F.; Iembo, T.; Bizotto, T.S.G.; et al. Prior intake of Brazil nuts attenuates renal injury induced by ischemia and reperfusion. J. Bras. Nefrol. 2018, 40, 10–17. [Google Scholar] [CrossRef]
- Stockler-Pinto, M.B.; Mafra, D.; Moraes, C.; Lobo, J.; Boaventura, G.T.; Farage, N.E.; Silva, W.S.; Cozzolino, S.F.; Malm, O. Brazil nut (Bertholletia excelsa, H.B.K.) improves oxidative stress and inflammation biomarkers in hemodialysis patients. Biol. Trace Elem. Res. 2014, 158, 105–112. [Google Scholar] [CrossRef]
- Duarte, G.B.S.; Reis, B.Z.; Rogero, M.M.; Vargas-Mendez, E.; Júnior, F.B.; Cercato, C.; Cozzolino, S.M.F. Consumption of Brazil nuts with high selenium levels increased inflammation biomarkers in obese women: A randomized controlled trial. Nutrition 2019, 63–64, 162–168. [Google Scholar] [CrossRef]
- Milani, G.B.; Camponogara, C.; Piana, M.; Silva, C.R.; Oliveira, S.M. Cariniana domestica fruit peels present topical anti-inflammatory efficacy in a mouse model of skin inflammation. Naunyn Schmiedebergs Arch. Pharmacol. 2019, 392, 513–528. [Google Scholar] [CrossRef] [PubMed]
- Santos, E.N.; Lima, J.C.; Noldin, V.F.; Cechinel-Filho, V.; Rao, V.S.; Lima, E.F.; Schmeda-Hirschmann, G.; Sousa, P.T., Jr.; Martins, D.T. Anti-inflammatory, antinociceptive, and antipyretic effects of methanol extract of Cariniana rubra stem bark in animal models. An. Acad. Bras. Cienc. 2011, 83, 557–566. [Google Scholar] [CrossRef] [PubMed]
- Silva, D.N.P.B.; Adriana, F.; Martins, D.T.O.; Borges, Q.I.; Lindote, M.V.N.; Zoratti, M.T.R.; Oliveira, R.G.; Torquato, H.F.V.; Gazoni, V.F.; Costa, L.A.M.A.D.; et al. Methanolic extract of Cariniana rubra Gardner ex Miers stem bark negatively regulate the leukocyte migration and TNF-α and up-regulate the annexin-A1 expression. J. Ethnopharmacol. 2021, 270, 113778. [Google Scholar] [CrossRef] [PubMed]
- Pinheiro, M.M.; Bessa, S.O.; Fingolo, C.E.; Kuster, R.M.; Matheus, M.E.; Menezes, F.S.; Fernandes, P.D. Antinociceptive activity of fractions from Couroupita guianensis Aubl. leaves. J. Ethnopharmacol. 2010, 127, 407–413. [Google Scholar] [CrossRef]
- Pinheiro, M.M.; Fernandes, S.B.; Fingolo, C.E.; Boylan, F.; Fernandes, P.D. Anti-inflammatory activity of ethanol extract and fractions from Couroupita guianensis Aublet leaves. J. Ethnopharmacol. 2013, 146, 324–330. [Google Scholar] [CrossRef]
- Muthulakshmi, V.; Dhilip Kumar, C.; Sundrarajan, M. Biological applications of green synthesized lanthanum oxide nanoparticles via Couroupita guianensis abul leaves extract. Anal. Biochem. 2022, 638, 114482. [Google Scholar] [CrossRef]
- Esposito, T.; Pisanti, S.; Martinelli, R.; Celano, R.; Mencherini, T.; Re, T.; Aquino, R.P. Couroupita guianensis bark decoction: From Amazonian medicine to the UHPLC-HRMS chemical profile and its role in inflammation processes and re-epithelialization. J. Ethnopharmacol. 2023, 313, 116579. [Google Scholar] [CrossRef]
- Silva, L.L.; Gomes, B.S.; Sousa-Neto, B.P.; Oliveira, J.P.; Ferreira, E.L.; Chaves, M.H.; Oliveira, F.A. Effects of Lecythis pisonis Camb. (Lecythidaceae) in a mouse model of pruritus. J. Ethnopharmacol. 2012, 139, 90–97. [Google Scholar] [CrossRef] [PubMed]
- Brandão, M.S.; Pereira, S.S.; Lima, D.F.; Oliveira, J.P.C.; Ferreira, E.L.F.; Chaves, M.H.; Almeida, F.R.C. Antinociceptive effect of Lecythis pisonis Camb. (Lecythidaceae) in models of acute pain in mice. J. Ethnopharmacol. 2013, 146, 180–186. [Google Scholar] [CrossRef][Green Version]
- Martins, M.V.; Carvalho, I.M.M.d.; Caetano, M.M.M.; Toledo, R.C.L.; Xavier, A.A.; Queiroz, J.H.d. Neuroprotective effect of Sapucaia nuts (Lecythis pisonis) on rats fed with high-fat diet. Nutr. Hosp. 2016, 33, 424–1429. [Google Scholar] [CrossRef]
- Ikumawoyi, V.O.; Onyemaechi, C.K.; Orolugbagbe, H.O.; Awodele, O.; Agbaje, E.O. Methanol extract of Napoleona vogelii demonstrates anti-nociceptive and anti-inflammatory activities through dopaminergic mechanism and inhibition of inflammatory mediators in rodents. Comp. Clin. Pathol. 2020, 29, 599–607. [Google Scholar] [CrossRef]
- Bomba, F.D.; Wandji, B.A.; Piegang, B.N.; Awouafack, M.D.; Sriram, D.; Yogeeswari, P.; Kamanyi, A.; Nguelefack, T.B. Antinociceptive properties of the aqueous and methanol extracts of the stem bark of Petersianthus macrocarpus (P. Beauv.) Liben (Lecythidaceae) in mice. J. Ethnopharmacol. 2015, 174, 66–73. [Google Scholar] [CrossRef]
- Orabueze, C.I.; Adesegun, S.A.; Coker, H.A. Analgesic and antioxidant activities of stem bark extract and fractions of Petersianthus macrocarpus. Phcog Res. 2016, 8, 181–185. [Google Scholar] [CrossRef] [PubMed]
- Bomba, F.D.T.; Nguelefack, T.B.; Matharasala, G.; Mishra, R.K.; Battu, M.B.; Sriram, D.; Kamanyi, A.; Yogeeswari, P. Antihypernociceptive effects of Petersianthus macrocarpus stem bark on neuropathic pain induced by chronic constriction injury in rats. Inflammopharmacology 2021, 29, 1241–1253. [Google Scholar] [CrossRef]
- World Flora Online Plant List. 2025. Available online: https://wfoplantlist.org/taxon/wfo-7000000322-2025-06 (accessed on 22 December 2022).
- Yang, Y.; Deng, Z.; Proksch, P.; Lin, W. Two new 18-en-oleane derivatives from marine mangrove plant, Barringtonia racemosa. Pharmazie 2006, 61, 365–366. [Google Scholar] [CrossRef]
- Sun, H.Y.; Long, L.J.; Wu, J. Chemical constituents of mangrove plant Barringtonia racemosa. Zhong Yao Cai 2006, 29, 671–672. [Google Scholar]
- BenSaad, L.A.; Kim, K.H.; Quah, C.C.; Kim, W.R.; Shahimi, M. Anti-inflammatory potential of ellagic acid, gallic acid and punicalagin A&B isolated from Punica granatum. BMC Complement. Altern. Med. 2017, 17, 47. [Google Scholar] [CrossRef]
- Gwori, P.M.; Radhakrishnan, S.V.S.; Basha, S.J.; Sarma, A.V.S.; Rao, J.M. Oleanane-Type Isomeric Triterpenoids from Barringtonia racemose. J. Nat. Prod. 2009, 72, 791–795. [Google Scholar] [CrossRef] [PubMed]
- Ragasa, C.Y.; Espineli, D.L.; Shen, C.C. A new triterpene from Barringtonia asiatica. Nat. Prod. Res. 2012, 26, 1869–1875. [Google Scholar] [CrossRef]
- Mills, C.; Carroll, A.R.; Quinn, R.J. Acutangulosides A-F, monodesmosidic saponins from the bark of Barringtonia acutangular. J. Nat. Prod. 2005, 68, 311–318. [Google Scholar] [CrossRef]
- Rao, G.S.R.S.; Prasanna, S.; Kumar, V.P.S.; Mallavarupo, G.R. Bartogenic acid: A new triterpene acid from Barringtonia speciosa. Phytochemistry 1981, 20, 333–334. [Google Scholar] [CrossRef]
- John, J.A.; Shahidi, F. Phenolic compounds and antioxidant activity of Brazil nut (Bertholletia excelsa). J. Funct. Foods 2010, 2, 196–209. [Google Scholar] [CrossRef]
- Kakkar, S.; Bais, S. A review on protocatechuic Acid and its pharmacological potential. ISRN Pharmacol. 2014, 2014, 952943. [Google Scholar] [CrossRef]
- Ziadlou, R.; Barbero, A.; Martin, I.; Wang, X.; Qin, L.; Alini, M.; Grad, S. Anti-Inflammatory and Chondroprotective Effects of Vanillic Acid and Epimedin C in Human Osteoarthritic Chondrocytes. Biomolecules 2020, 10, 932. [Google Scholar] [CrossRef]
- Lima, E.F.; Sousa-Filho, P.T.; Bastida, J.; Schmedahirschman, G. Saponins from Cariniana rubra (Lecythidaceae). Bol. Soc. Chil. Quim. 2002, 47, 441–447. [Google Scholar] [CrossRef]
- Bergman, J.; Lindström, J.O.; Tilstam, U. The structure and properties of some indolic constituents in Couroupita guianensis aubl. Tetrahedron 1985, 41, 2879–2881. [Google Scholar] [CrossRef]
- Sen, A.K.; Mahato, S.B.; Dutta, N.L. Couroupitine a, a new alkaloid from Couroupita guianensis. Tetrahedron Lett. 1974, 15, 609–610. [Google Scholar] [CrossRef]
- Sarkar, P.; Zohora, F.T.; Jabbar, A.; Tareq, F.S.; Hasan, C.M.; Ahsan, M. Phytochemical Studies on the Stem Bark of Couroupita guianensis Aubl. Asian J. Chem. 2013, 25, 4559–4562. [Google Scholar] [CrossRef]
- Demoliner, F.; Policarpi, P.B.; Vasconcelos, L.F.L.; Vitali, L.; Micke, G.A.; Block, J.M. Sapucaia nut (Lecythis pisonis Cambess) and its by-products: A promising and underutilized source of bioactive compounds. Part II: Phenolic compounds profile. Food Res. Int. 2018, 112, 434–442. [Google Scholar] [CrossRef] [PubMed]
- Almeida-Júnior, S. In Vivo methods for the evaluation of anti-inflammatory and antinoceptive potential. BrJP 2019, 2, 386–389. [Google Scholar] [CrossRef]
- Massiot, G.; Chen, X.F.; Lavaud, C.; Men-Ouvier, L.L.; Delaude, C.; Viari, A.; Vigny, P.; Durval, J. Saponins from stem bark of Petersianthus macrocarpus. J. Nat. Prod. 1992, 55, 1339–1342. [Google Scholar] [CrossRef]
- Moghimipour, E.; Handali, S. Saponin. Properties, methods of evaluation and applications. Annu. Res. Rev. Biol. 2014, 5, 207–220. [Google Scholar] [CrossRef]
- Yi, Y.S. New mechanisms of ginseng saponin-mediated anti-inflammatory action via targeting canonical inflammasome signaling pathways. J. Ethnopharmacol. 2021, 278, 114292. [Google Scholar] [CrossRef]
- Luo, J.D.; Chen, A.F. Nitric oxide: A newly discovered function on wound healing. Acta Pharmacol. Sin. 2005, 26, 259–264. [Google Scholar] [CrossRef] [PubMed]
- Oliveira-Costa, J.F.; Meira, C.S.; Neves, M.V.G.d.; Dos Reis, B.P.Z.C.; Soares, M.B.P. Anti-Inflammatory Activities of Betulinic Acid: A Review. Front. Pharmacol. 2022, 13, 883857. [Google Scholar] [CrossRef]
- Laurindo, L.F.; Santos, A.R.d.O.d.; Carvalho, A.C.A.d.; Bechara, M.D.; Guiguer, E.L.; Goulart, R.d.A.; Vargas Sinatora, R.; Araújo, A.C.; Barbalho, S.M. Phytochemicals and Regulation of NF-kB in Inflammatory Bowel Diseases: An Overview of In Vitro and In Vivo Effects. Metabolites 2023, 13, 96. [Google Scholar] [CrossRef]
- Habtemariam, S.; Belai, A. Natural Therapies of the Inflammatory Bowel Disease: The Case of Rutin and its Aglycone, Quercetin. Mini Rev. Med. Chem. 2018, 18, 234–243. [Google Scholar] [CrossRef]
- Marín, M.; Giner, R.M.; Ríos, J.L.; Recio, M. Protective effect of apocynin in a mouse model of chemically-induced colitis. Planta Med. 2013, 79, 1392–1400. [Google Scholar] [CrossRef]
- Zou, Z.; Zhang, F.; Pan, Z.; Xu, J.; Li, X.; Sun, X.; Wang, X.; Qin, F.; Abulizi, A.; Chen, Q.; et al. Assessing the therapeutic potential of rutin in alleviating symptoms of inflammatory bowel disease: A meta-analysis. Front. Pharmacol. 2025, 16, 1539469. [Google Scholar] [CrossRef] [PubMed]
- Morikawa, K.; Nonaka, M.; Narahara, M.; Torii, I.; Kawaguchi, K.; Yoshikawa, T.; Kumazawa, Y.; Morikawa, S. Inhibitory effect of quercetin on carrageenan-induced inflammation in rats. Life Sci. 2003, 74, 709–721. [Google Scholar] [CrossRef] [PubMed]
- Jung, W.J.; Sung, M.K. Effects of major dietary antioxidants on inflammatory markers of RAW 264.7 macrophages. Biofactors 2004, 21, 113–117. [Google Scholar] [CrossRef] [PubMed]
- Kahkeshani, N.; Farzaei, F.; Fotouhi, M.; Alavi, S.S.; Bahramsoltani, R.; Naseri, R.; Momtaz, S.; Abbasabadi, Z.; Rahimi, R.; Farzaei, M.H.; et al. Pharmacological effects of gallic acid in health and diseases: A mechanistic review. Iran. J. Basic. Med. Sci. 2019, 22, 225–237. [Google Scholar] [CrossRef]
- Pandurangan, A.K.; Mohebali, N.; Norhaizan, M.E.; Looi, C.Y. Gallic acid attenuates dextran sulfate sodium-induced experimental colitis in BALB/c mice. Drug Des. Dev. Ther. 2015, 9, 3923–3934. [Google Scholar] [CrossRef]
- Masamune, A.; Satoh, M.; Kikuta, K.; Suzuki, N.; Satoh, K.; Shimosegawa, T. Ellagic acid blocks activation of pancreatic stellate cells. Biochem. Pharmacol. 2005, 70, 869–878. [Google Scholar] [CrossRef]
- Romier, B.; Van De Walle, J.; During, A.; Larondelle, Y.; Schneider, Y. Modulation of signalling nuclear factor-κB activation pathway by polyphenols in human intestinal Caco-2 cells. Br. J. Nutr. 2008, 100, 542–551. [Google Scholar] [CrossRef]
- Zhou, E.; Fu, Y.; Wei, Z.; Yang, Z. Inhibition of allergic airway inflammation through the blockage of NF-κB activation by ellagic acid in an ovalbumin-induced mouse asthma model. Food Funct. 2014, 5, 2106–2112. [Google Scholar] [CrossRef]
- Ríos, J.L.; Giner, R.M.; Marín, M.; Recio, M.C. A Pharmacological Update of Ellagic Acid. Planta Med. 2018, 84, 1068–1093. [Google Scholar] [CrossRef]
- Luan, M.; Wang, H.; Wang, J.; Zhang, X.; Zhao, F.; Liu, Z.; Meng, Q. Advances in Anti-inflammatory Activity, Mechanism and Therapeutic Application of Ursolic Acid. Mini Rev. Med. Chem. 2022, 22, 422–436. [Google Scholar] [CrossRef]
- Brune, K.; Patrignani, P. New insights into the use of currently available non-steroidal anti-inflammatory drugs. J. Pain. Res. 2015, 20, 105–118. [Google Scholar] [CrossRef]
- Biase, T.M.M.A.; Rocha, J.G.M.; Silva, M.T.; Ribeiro-Vaz, I.; Galvão, T.F. Renal effects of selective cyclooxygenase-2 inhibitor anti-inflammatory drugs: A systematic review and meta-analysis. Explor. Res. Clin. Soc. Pharm. 2024, 15, 100475. [Google Scholar] [CrossRef]
- Fang, P.; Li, X.; Dai, J.; Cole, L.; Camacho, J.A.; Zhang, Y.; Ji, Y.; Wang, J.; Yang, X.F.; Wang, H. Immune cell subset differentiation and tissue inflammation. J. Hematol. Oncol. 2018, 11, 97. [Google Scholar] [CrossRef]
- Chen, Z.; Shao, Z.; Mei, S.; Yan, Z.; Ding, X.; Billiar, T.; Li, Q. Sepsis Upregulates CD14 Expression in a MyD88-Dependent and Trif-Independent Pathway. Shock 2018, 49, 82–89. [Google Scholar] [CrossRef] [PubMed]
- Nadkarni, K.M. Indian Materia Medica; Popular Prakashan Pvt. Ltd.: Bombay, India, 1982. [Google Scholar]
- Padmavathi, D.; Bharathi, R.V.; Sarala, A. In Vitro anthelmintic activity of ethanolic extracts of Barringtonia acutangula (L.) Gaertn. Int. J. Pharmtech Res. 2011, 3, 784–786. [Google Scholar] [CrossRef]
- Chi, V.V. Dictionary of Vietnamese Medicinal Plants; Publishing House Medicine: Hanoi, Vietnam, 2012. [Google Scholar]
- Kirtikar, E.B.; Kirtikar, K.R.B.S.; Singh, M.P. (Eds.) Plantas Medicinais Indianas 2; Distribuidores e Editores Internacionais de Livros: Dehradun, Índia, 1975. [Google Scholar]
- Sambathkumar, R.; Sivakumar, T.; Sivakumar, P.; Nethaji, R.; Vijayabasker, M.; Perumal, P.; Gupta, M.; Mazumder, K. Hepatoprotective and in vivo antioxidant effects of Careya arborea against carbon tetrachloride induced liver damage in rats. Int. J. Mol. Med. Adv. Sci. 2005, 1, 418–424. [Google Scholar] [CrossRef]
- Sanz-Biset, J.; Campos-de-la-Cruz, J.; Epiquién-Rivera, M.A.; Cañigueral, S. A first survey on the medicinal plants of the Chazuta valley (Peruvian Amazon). J. Ethnopharmacol. 2009, 122, 333–362. [Google Scholar] [CrossRef] [PubMed]
- De La Cruz, M.G. Plantas Medicinais de Mato Grosso: A Farmacopeia Popular dos Raizeiros; Carlini e Caniato: Cuiaba, Brazil, 2008. [Google Scholar]
- Coimbra, R. Manual de Fitoterapia, 2nd ed.; Editora Cejup: Belem, Brazil, 1994. [Google Scholar]
- Janovik, V.; Boligon, A.A.; Frohlich, J.K.; Schwanz, T.G.; Pozzebon, T.V.; Alves, S.H.; Athayde, M.L. Isolation and chromatographic analysis of bioactive triterpenoids from the bark extract of Cariniana domestica (Mart) Miers. Nat. Prod. Res. 2012, 26, 66–71. [Google Scholar] [CrossRef]











| Database | Search Strategy |
|---|---|
| Scopus n = 225 | (ALL (inflammation OR pain OR nociception) AND ALL (“anti-inflammatory” OR antiinflammatory OR “anti-inflammatory” OR antinociceptive OR analgesic) AND ALL (Lecythidaceae)) |
| Web of Science Core Collection n = 16 | ALL = ((inflammation OR pain OR nociception) AND (“anti-inflammatory” OR antinociceptive OR analgesic) AND (Lecythidaceae)) |
| PubMed/MEDLINE n = 21 | (inflammation OR nociception) AND (“anti-inflammatory” OR “antiinflammatory” OR antinociceptive) AND (Lecythidaceae) |
| ScienceDirect n = 141 | (“anti-inflammatory” OR “antinociceptive”) AND (“Lecythidaceae”) |
| Species | Material/Type of Administration | Type of Model | Activity | Ref. |
|---|---|---|---|---|
| Barringtonia angusta Kurz | Methanolic extract from leaves and stem; Extract containing: Silibinin (1) and kaempferol (2); Oral administration. | In vitro/in vivo; NO production assays using macrophage activation (RAW264.7 cells) stimulated with LPS and Pam3CSK4; Evaluation mRNA levels of inflammatory genes (iNOS, COX-2, IL-1β, TNF-α, and IL-6) RAW264.7 cells; Luciferase reporter gene assays using MyD88- or TRIF-induced HEK293T cells; HCl/EtOH-induced acute gastritis mouse (50 or 100 mg kg−1 orally administered). | ↓ Nitric oxide (NO); ↓ iNOS, COX-2, IL-1β, TNF-α, and IL-6 mRNA transcriptional expression; ↓ NF-κB transcriptional activation; ↓ Phosphorylated forms of Src; ↓ Inflammatory gastric lesions. | [18] |
| Barringtonia angusta Kurz | Methanolic extract from leaves and stem; Extract containing: Silibinin (1) and kaempferol (2); Oral administration. | In vitro/in vivo; Chemokines (CXCL3, CXCL9, COX-2, GAPDH, and CCL12) mRNA expression by RT-PCR (RAW264.7 cells); Cellular cytotoxicity of extract (25–50 µg mL−1) in HEK293T cells; Model of LPS-induced peritonitis and NO production. | ↓ COX-2 and CCL12 expression in macrophages; ↓ Functional activation of AP-1; ↓ Phosphorylated forms of AP-1 pathway-related proteins; Cell viability was not affected; ↓ NO levels; ↓ Inflammatory lesions. | [19] |
| Barringtonia racemosa (L.) Roxb. | Ethanol–water (7:3) extract of fruit; gel formulation with 3–7 ppm of extract; Fruit containing: Bartogenic acid (3); Topical administration. | In vivo; Wound healing assay. | ↑ Wound healing process in a group treated with 7 ppm B. racemosa extract; ↓ Lesion area, without the presence of exudate and redness; 80% healthy granulation; ↓ Inflammatory symptoms. | [20] |
| Barringtonia racemosa (L.) Roxb. | Ethanol extract of fruit; Fruit containing: Bartogenic acid (3), racemosol (4), isoracemosol (5), barringtogenol (6), and estimasterol (7); Oral administration. | In vivo/in vitro; Anti-inflammatory activity:
| 66.6% (125 mg kg−1) and 70% (250 mg kg−1) of reduction carrageenan induced paw edema; 61.6% (125 mg kg−1) and 75% (250 mg kg−1) of reduction formalin induced paw edema; ↓ Liver lipid peroxidation in vitro; 91.8% antinociceptive action with 500 mg kg−1 dose; Toxicity greater than 1500 mg kg−1. | [21] |
| Barringtonia racemosa (L.) Roxb. | Methanolic extracts of inflorescence axes, leaves, endosperms, and pericarps; Fruit containing: Bartogenic acid (3), racemosol (4), isoracemosol (5), barringtogenol (6), and estimasterol (7); Leaves containing: gallic acid (8), protocatechuic acid (9), ellagic acid (10), quercetin (11), rutin (12), kaempferol (2), ascorbic acid (13), β-carotene (14), and lycopene (15). | In vitro; Xanthine oxidase inhibition assay; Albumin denaturation inhibition assay. | Xanthine oxidase inhibition: 59.54% inflorescence, 58.82% leaves, 57,99% pericarps, and 57.20% endosperm extracts; Albumin denaturation inhibition: 70.58% inflorescence, 66.80% endosperms, 65.29% leaves, and 43.33% pericarp extracts. | [22] |
| Barringtonia racemosa (L.) Roxb. | Aqueous bark extract; Bark containing: olean-18-en-3-β-O-Z-coumaroyl ester (16), olean-18-en-3-β-O-E-coumaroyl ester (17), germanicol (18), germanicone (19), lupeol (20), taraxerol (21), betulinic acid (22), bartogenic acid (3), stigmasterol (7), dihydromyticetin (23), 3,3’-dimethoxy ellagic acid (24), and gallic acid (8); Oral administration. | In vivo; Hot plate and formalin tests; Subchronic toxicity. | Antinociceptive action and prolonged dose-dependent analgesia; Weak activity in the early and late phases; The extract did not promote signs of toxicity. | [23] |
| Barringtonia racemosa (L.) Roxb. | Hexane, ethanolic, and chloroform extracts from leaves; Leaves containing: gallic acid (8), protocatechuic acid (9), ellagic acid (10), quercetin (11), rutin (12), kaempferol (2), ascorbic acid (13), β-carotene (14), and lycopene (15). | In vitro; NO inhibition by Griess method (LPS- and interferon-γ-induced RAW264.7 cells); Cytotoxic in vitro (RAW264.7 cells). | ↓ NO production; Chloroform extract showed no cytotoxic effect. | [24] |
| Barringtonia racemosa (L.) Roxb. | Fruit ethyl acetate fraction; Fruit containing: Bartogenic acid (3); Oral administration. | In vivo; Acute and chronic inflammation; Paw edema test (carrageenan, histamine, and serotonin 5-HT) Cotton pellet granuloma test; Oxazolone-induced delayed-type hypersensitivity-DTH ear edema. | ↓ Paw volume with 20 mg kg−1 of dose: 13.0% in carrageenan model (10 mg kg−1 of diclofenac—8.5% after 1 h); 11.0% in histamine model (10 mg kg−1 of cyproheptidine—7.9% after 1 h); 24.0% in serotonin model (10 mg kg−1 of cyproheptidine—22.0% after 1 h); Activity against chronic inflammation—dry (113.0 mg) and wet (49.0 mg) weights of the granuloma (1 mg kg−1 of dexamethasone—106.0 and 46.0 mg, respectively); Intensity of DTH at 24 h with 20 mg kg−1 of dose: 46.0% (1 mg kg−1 of dexamethasone—41.0%). | [2] |
| Barringtonia racemosa (L.) Roxb. | Bartogenic acid (3) isolated from fruit; Oral administration. | In vivo; Complete Freund’s adjuvant-induced arthritis. | ↓ Paw volume with 10 mg kg−1 day−1 of bartogenic acid: 91% in primary and 11% in secondary lesions at 21st day (5 mg kg−1 day−1 of diclofenac—83% and 13%, respectively); ↓ Body weight changes and alterations in hematological parameters. | [7] |
| Barringtonia acutangular (L.) Gaertn. | Barringoside A (25), Barringoside B (26), Barringoside C (27), Barringoside D (28), Barringoside E (29), Barringoside F (30), Kaempferol 3-O-β-D-galactopyranoside (31), Quercetin-3-O-β-D-galactopyranoside (32), Quercetin 3-O-β-D-(6-p-hydroxybenzoyl)-galactopyranoside (33), and Quercetin-3-O-α-L-arabinopyranosyl-(1→2)-β-D-galactopyranoside (34) isolated from leaves. | In vitro; Inhibition of LPS-induced NO production in RAW264.7 cells. | ↓ NO production: only quercetin- 3-O- β-D-(6-p-hydroxybenzoyl)-galactopyranoside (IC50 of 20.00 μM). | [25] |
| Barringtonia acutangular (L.) Gaertn. | Methanolic extract from leaves and seeds; Leaves containing: Flavonoids [25]; Oral administration. | In vivo; Acetic acid-induced writhing test; Hot plate test; tail immersion test; Acute toxicity. | Leaf and seed extracts (400 mg kg−1 doses) inhibited the nociceptive action in 68.60% and 83.33%, respectively; Both extracts (200 and 400 mg kg−1) increased latency time in the hot plate test in both doses; Both extracts increased latency time in the tail immersion test in both doses, but with less action than that in the hot plate test; Toxicity greater than 2000 mg kg−1. | [26] |
| Barringtonia acutangula (L.) Gaertn. | Chloroform extract from leaves; Leaves containing: Flavonoids [25]; Oral administration. | In vivo; Complete Freund’s adjuvant-induced arthritis; Acute toxicity. | Fourteen days of prophylactic model—55% of inflammation at dose 200 mg kg−1 and 43% at dose 400 mg kg−1 (1 mg kg−1 of indomethacin—33%); Fourteen days of therapeutic model—no statistical difference was observed between all groups; Twenty-one days of therapeutic model—70% of inflammation at dose 200 mg kg−1 and 56% at dose 400 mg kg−1 (1 mg kg−1 of dexamethasone—36%); Toxicity greater than 2000 mg kg−1. | [27] |
| Barringtonia acutangula (L.) Gaertn. | Ethanolic root extract; Root containing: unidentified compounds; Oral administration. | In vivo; Antinociceptive activity:
Anti-inflammatory activity:
| Acetic-acid-induced writhing test—inhibition of writhing by extract was 10.34% and 13.80% at 250 and 500 mg kg−1 doses, respectively; Hot plate test—69.37% and 91.33% of analgesia was achieved at 250 and 500 mg kg−1 doses, respectively; Acute model—6.70% and 26.82% of reduction in the paw edema at 3 h for 250 and 500 mg kg−1 doses, respectively; Chronic model—10.04% and 24.56% of reduction in dry weight of the cotton pellets for 250 and 500 mg kg−1 doses, respectively. | [28] |
| Barringtonia pendula (Griff.) Kurz | Acylated flavonoid glycosides: Barringoside J (35); Barringoside K (36); Barringoside L (37); Barringoside M (38); Barringoside N (39); Barringoside O (40); Tephrokaempferoside (41). | In vitro; NO production assay. | ↓ NO production only by Barringosides M (IC50 of 48.40 μM) and N (IC50 of 6.61 μM); Positive control dexamethasone (IC50 of 14.20 μM). | [29] |
| Bertholletia excelsa Bonpl. | Brazil nut (BN); Nuts containing: gallic acid (8), protocatechuic acid (9), ellagic acid (10), protocatechuic aldehyde (42), and vanillic acid (43); Oral administration. | In vivo; Ischemia and reperfusion (IR) and BN pretreatment; Evaluation of renal expression of COX-2, TGF-β, vimentin, and caspase-3. | 75 mg BN reduced renal expression of all markers in the IR groups; 150 mg BN increased renal COX-2 and caspase-3 expression after IR. | [30] |
| Bertholletia excelsa Bonpl. | Brazil nut (BN); Nuts containing: gallic acid (8), protocatechuic acid (9), ellagic acid (10), protocatechuic aldehyde (42), and vanillic acid (43); Oral administration. | In vivo; Ischemia and reperfusion (IR) and BN pretreatment; Evaluation of the effects of IR: plasma levels of creatinine, urea, phosphorus, TBARS and TEAC; urinary volume, proteinuria; Creatinine clearance; modulated expression of iNOS, nitrotyrosine, and macrophage influx. | 75 mg BN attenuated the effects of IR; 150 mg BN increased creatinine, urea, and phosphorus levels; Both dosages reduced the influx of macrophages; No significant difference in TEAC level was observed between groups; Both dosages reduced the oxidative stress markers (iNOS, nitrotyrosine, and TBARS). | [31] |
| Bertholletia excelsa Bonpl. | Brazil nut (BN); Nuts containing: gallic acid (8), protocatechuic acid (9), ellagic acid (10), protocatechuic aldehyde (42), and vanillic acid (43); Daily supplementation of Brazil nuts for three months in patients with hemodialysis. | Randomized clinical trial Evaluation of oxidative stress and inflammation in patients. | ↓ 8-OHdG, 8-isoprostane, IL-6 and TNF-α levels; ↑ GPx activity and plasma Selenium levels. | [32] |
| Bertholletia Excelsa Bonpl. | Brazil nut (BN); Nuts containing: gallic acid (8), protocatechuic acid (9), ellagic acid (10), protocatechuic aldehyde (42), and vanillic acid (43); Consumption of BN with a high concentration of selenium by obese women. | Randomized clinical trial Evaluation of selenium (Se) biomarkers: glutathione peroxidase (GPx-1) activity, plasma Se concentration, erythrocyte Se concentration, and selenoprotein P concentration; Evaluation of inflammatory biomarkers gene expression: GPx1, SELENOP, TNF-α, IL-1 β, IL-6, IL-10, TLR2, and TLR4 genes. | ↑ Concentration of all Se biomarkers; ↑ Expression of selenoprotein P, TNF-α, IL-6, IL-10, TLR2, and TLR4 genes in the BN group; ↓ Expression of the GPx1 mRNA gene; ↑Se biomarker concentrations increase inflammatory biomarker concentrations; IL-1 β mRNA expression without significant difference between the groups. | [33] |
| Careya arborea Roxb. | Methanolic stem bark extract; Stem bark extract containing: quercetin (21) and betulinic acid (22); Oral administration. | In vivo/in vitro; Carrageenan-induced paw edema test; Evaluation of inflammatory mediators (MDA, CRP, NO, MPO, TNF-α, and IL-1β). | Decreased edema in the 1st to 5th hour; 200 mg kg−1 inhibited paw edema by 65.53%; ↓ levels of pro-inflammatory mediators (200 mg kg−1). | [4] |
| Careya arborea Roxb. | Betulinic acid (22), 3β-hydroxy-lup-5,20(29),21-trien-28-oic acid (44), 1,3,13,16-tetrahydroxy-lup-9(11),20(29)-diene-28-oic acid (45), 1,7-dihydroxy betulinic acid (46), 3β-O-dihydrocinnamyl betulinic acid (47), coumaroyl-lupendioic acid (48), and 16β-hydroxy-2,3-seco-lup-5,20(29)-dien-2,3,28-trioic acid (49) isolated from methanolic stem bark extract. | In vivo/in vitro; COX-1 and COX-2 inhibition assays; λ-carrageenan-induced paw edema test; Evaluation of inflammatory mediators (NO, MPO, PGE2, COX-1 and 2, TNF-α, IL-1β, IL-6); Evaluation of protein expression in animal tissue (NF-κB, COX-2, and TNF-α). | Compound 22 inhibited COX-1 (IC50 =15.90 μM) and COX-2 (IC50 = 11.97 μM); Compound 44 inhibited COX-1 (IC50 =20.67 μM) and COX-2 (IC50 = 68.90 μM); Compound 45 inhibited COX-1 (IC50 = 18.20 μM) and COX-2 (IC50 = 29.10 μM); Compound 46 inhibited COX-1 (IC50 = 18.38 μM) and COX-2 (IC50 = 60.63 μM); Compound 47 inhibited COX-1 (IC50 = 17.49 μM) and COX-2 (IC50 = 10.75 μM); Compound 48 inhibited COX-1 (IC50 = 16.63 μM) and COX-2 (IC50 = 2.45 μM); Compound 49 inhibited COX-1 (IC50 = 19.41 μM) and COX-2 (IC50 = 26.35 μM); Compound 22 reduced the paw volume by 40.83% and 54.35% for 10 and 20 mg kg−1 doses, respectively; Compound 48 reduced the paw volume by 49.19% and 68.89% for 10 and 20 mg kg−1 doses, respectively; Compounds 22 and 48 reduced NO, MPO, PGE2, TNF-α, IL-1β and IL-6 levels; Compound 48 reduced serum TNF-α levels; Compound 22 reduced the expression of NF-κB. | [5] |
| Cariniana domestica (Mart.) Miers | 70% hydroethanolic extract of fruit peels; Fractions from 70% hydroethanolic extract: dichloromethane, ethyl acetate, n-butanol; Ethyl acetate fraction containing: β-sitosterol (50), stigmasterol (7), and lupeol (20); Topical administration (vehicle acetone and gel). | In vivo Croton-oil-induced ear edema; Acute and chronic models. | Hydroethanolic extract (97%) and dichloromethane (86%), n-butanol (81%), and ethyl acetate (95%) fractions decreased the acute ear edema (1 mg ear−1); β-sitosterol (7.5 μg ear−1), lupeol (10 μg ear−1), and stigmasterol (5.7 μg ear−1) reduced acute ear edema by 46, 51, and 62%, respectively; Hydroethanolic extract (3%;15 mg ear−1) and ethyl acetate fraction (1%;15 mg ear−1) gel presented similar effects, with respective decreased the acute ear edema of 85% and 82%; Hydroethanolic extract (69%) and the dichloromethane (54%), n-butanol (43%), and ethyl acetate (76%) fractions decreased the MPO’s activity at 1 mg ear−1, respectively; Hydroethanolic extract also decreased the ear edema by 77% (1 mg/ear) and the inflammatory cell infiltration in the chronic model, after 6 days of topical treatment. | [34] |
| Cariniana rubra Miers | Methanolic stem bark extract β-sitosterol (50), sitosterol 3-O-β-D-glucopyranoside (51), stigmasterol (7), α-amyrin (52), β-amyrin (53), arjunolic acid (54), 28-β-glucopyranosyl-23-O-acetyl arjunolic acid (55), 3-O-β-glucopyranosyl arjunolic acid (56), and 28-O-[α-L-rhamnopyranosyl-(1→ 2)-β-glucopyranosyl]-23-O-acetyl arjunolic acid (57); Oral administration. | In vivo; Anti-inflammatory assays: Hind paw-edema induced by carrageenan and dextran test; Carrageenan-induced pleurisy in rats test; Acetic-acid-induced increase in vascular permeability test. Antinociceptive assays: Formalin test, hot plate test, and writhing test. Antipyretic assays: Brewer’s yeast induced pyrexia test. | 38% (2000 mg kg−1) reduction in the carrageenan-induced rat hind paw edema; 60% (2000 mg kg−1) reduction in the dextran-induced paw edema; 80% (2000 mg kg−1) inhibition of pleuritic exudate and leukocyte migration; 57% (750 mg kg−1) reduction in amount of writhing; 28% (750 mg kg−1) action in the second phase of the formalin test (reference drug 99%); Analgesic action not observed in hot plate test; Antipyretic action only at a dosage of 2000 mg kg−1. | [35] |
| Cariniana rubra Miers | Methanolic stem bark extract; Dihydroxyacetone (58), Glycerol (59), 1,3,5-Benzetriol (60), Thymine (61), Xylitol (62), 3-(3-Hydroxyphenyl) hydracrylic acid (63), Methyl α-D-glucofuranoside (64), D-Glucose (65), Rhamnose (66), Gallic acid (8), Palmitic Acid (67), (Z,Z)-9,12-Octadecadienoic acid methyl ester (68), (Z,Z)-9,12-Octadecadienoic acid (69), (E)-9-Octadecenoic acid (70), bis(2-ethylhexyl)-adipate (71), Sucrose (72), Squalene (73), Stigmast-4-en-3-one (74), Lanosterol (75), Stigmasterol (7), β-Sitosterol (50), and β-Amyrin (53); Subcutaneous injection. | In vivo; λ-carrageenan-induced acute inflammation in the mouse model of subcutaneous air pouch; Evaluation of inflammatory biomarkers of animal tissue (TNF-α, IL-1β, Annexin-A1); Cytoxicity (CHO-k1 cells); Hippocratic screening test. | 57.7% (750 mg kg−1) reduction in polymorphonuclear migration and 74.5% reduction in leukocyte monocyte migration in the air pouch cavity; 57.8% (300 mg kg−1) reduction in polymorphonuclear migration and 61.8% reduction in leukocyte monocyte migration in the skin tissue; ↓ TNF-α concentration; No changes in IL-1β levels; ↑ Annexin-A1 expression; Non-cytotoxic after 24 h; Non-toxic in vivo. | [36] |
| Couroupita guianensis Aubl. | Ethanolic extract from leaves; Fractions from ethanolic extract: hexane, dichloromethane, ethyl acetate, and butanol; Leaves containing: caffeic acid (76), sinapic acid (77), rutin (12), quercetin (11), kaempferol (2), apigenin (78), and luteolin (79); Oral administration. | In vivo; Acetic-acid-induced abdominal writhing; Tail flick test and hot plate test; Acute toxicity. | All samples inhibited the action of acetic-acid-induced abdominal writhing assay; Fraction of hexane and ethyl acetate showed better result in the tail flick test; All fractions were active at the highest dose (100 mg kg−1) in the hot plate test; The fractions were non-toxic. | [37] |
| Couroupita guianensis Aubl. | Ethanolic extract from leaves; Fractions from ethanolic extract: hexane and ethyl acetate; Leaves containing: caffeic acid (76), sinapic acid (77), rutin (12), quercetin (11), kaempferol (2), apigenin (78), and luteolin (79); Oral administration. | In vivo; Models of inflammatory pain (formalin test); Acute inflammation (carrageenan-induced peritonitis). | All samples exhibited antinociceptive action in the neurogenic phase ≥ reference drug; Only fractions reduced lick duration in a dose-dependent manner; Doses of 100 mg kg−1 of ethanolic extract and hexane and ethyl acetate fractions reduced by almost 100% during cell migration. | [38] |
| Couroupita guianensis Aubl. | Nanoparticles (NPs) of La2O3 and ethanolic extract from leaves; Leaves containing: caffeic acid (76), sinapic acid (77), rutin (12), quercetin (11), kaempferol (2), apigenin (78), and luteolin (79). | In vitro; Bovine serum albumin denaturation (BSA) inhibition assay. | For concentrations 50 to 500 μg mL−1, La2O3NPs promoted an inhibition of BSA denaturation. | [39] |
| Couroupita guianensis Aubl. | Bark stem decoction; Gallic acid (8), ellagic acid (10), and 4-(2′′-O-sulphate- β-D-glucuronopyranosyl)-ellagic acid (80). | In vitro; Cell migration by wound healing assay; Western blot test. | Bark stem decoction stimulated wound healing and blocked NF-kB activation; ↓ Suppressing cutaneous inflammatory damage. | [40] |
| Lecythis pisonis Cambess. | Ethanol extract from leaves (LPEE); Fractions from ethanol extract: Hexane (LPHF), ethyl ether (LPEF), and ethyl acetate (LPEAF) fractions; Mixture of triterpenes (MT): oleanolic acid (81) and ursolic acid (82); Oral administration. | In vivo/ex vivo; Spontaneous antipruritic activity; Peritoneal mast cell degranulation (ex vivo); Model of carrageenan-induced paw edema. | Doses of 100 and 200 mg kg−1 LPEE, LPHF, LPEF, and LPEAF inhibited drug-induced scratching by 45.82%, 63.24%, 43.34%, 58.28%, 31.96%, 77.31%, 21.12%, and 37.64%, respectively; Dose of 25 and 50 mg kg−1 of MT inhibited drug-induced scratching by 35.84% and 59.26%, respectively; LPEE, LPEF, and MT suppressive effects were partially antagonized by naloxone; Doses of 200 mg kg−1 of LPEE and LPEF, and mg kg−1 of MT reduced the drug-induced degranulation in 31.26%, 49.12%, and 55.80%, respectively; LPEF (200 mg kg−1) reduced edema in all observations (1–6 h; 41.55%, 62.68%, 52.68%, 46.10%, 60.65%, and 74.86%, respectively). | [41] |
| Lecythis pisonis Cambess. | Ethanol extract from Lecythis pisonis leaves (LPEE); Fractions from ethanol extract: Hexane (LPHF), ethyl ether (LPEF), and ethyl acetate (LPEAF); Mixture of triterpenes (MT): oleanolic acid (81) and ursolic acid (82); Oral administration. | In vivo; Formalin, acetic-acid-induced writings, capsaicin- and glutamate-induced pain tests. | Doses of 100 mg kg−1 of ethanol extract and 50 mg kg−1 of ether fraction were the most effective in reducing pain in the formalin test in both phases (1st phase: 41.77% and 35.13; 2nd phase: 29.87% and 60.37%, respectively); Dose of 12.5 mg kg−1 of ethanol extract (57.45%), ether (53.58%) fraction, and mixture of triterpenes (42.66%) were responsible for reducing the amount of writhing in mice; Doses of 200 mg kg−1 of ethanol extract and 25 mg kg−1 ether fraction caused a reduction in capsaicin-induced neurogenic pain in mice of 61.24% and 59.45%, respectively; Doses of 50 mg kg−1 of LPEE and LPEF presented a reduction in glutamate-induced nociception with inhibition of 48.43% and 46.62%, respectively; Modulation of L-arginine-nitric oxide and opioid system via K+ATP channels is involved in antinociception action of LPEF. | [42] |
| Lecythis pisonis Cambess. | Nut; Nuts containing: gallic acid (8), vanillic acid (43), ferulic acid (83), syringic acid (84), sinapic acid (77), salicilic acid (85), ellagic acid (10), taxifolin (86), catechin (87), epicatechin (88), epigallocatechin (89), sinapaldehyde (90), myricetin (91), and quercetin (11); Oral administration; Nut-enriched diets. | In vivo; Evaluation of gene expression of pro-inflammatory markers (TNF-α, NF-kB (p65), ZnSOD, and HSP-72 mRNA genes; GAPDH gene was used as reference); Lipid peroxidation analysis—malondialdehyde (MDA) production; Superoxide dismutase (SOD) antioxidant activity. | Decreased gene expression of TNF-α, NFkB in the groups of rats that consumed the nut diets; Increased gene expression of ZnSOD and HSP-72 in the groups of rats that consumed nut diets; Decreased lipid peroxidation in the groups receiving nuts; Increased SOD enzyme activity in all groups treated with sapucaia nuts. | [43] |
| Napoleona vogelii Hook. & Planch. | Methanol stem bark extract; Methanol extract containing: palmitic acid (67), 9,12-octadecadienoic acid (69), 9-octadecenoic acid (70), phytol (92), stearic acid (93), methyl stearate (94), oleic acid (95), cis-10-nonadecenoic acid (96), 7-hexadecenoic acid (97), pentadecanoic acid (98), and tridecanoic acid (99); Oral administration. | In vivo; Anti-inflammatory activity:
| 90.98% inhibition of carrageenan-induced edema (400 mg kg−1); 82.81% inhibition of formalin-induced edema (400 mg kg−1); Nociceptive reaction only in second phase; 54.87% reduction in writhing (400 mg kg−1); 95.08% inhibition of histamine effect; 46.79% inhibition serotonin effect; Extract without antinociceptive action via opioid receptors; Extract with antinociceptive action via dopamine receptors; Toxicity greater than 4000 mg kg−1. | [44] |
| Petersianthus macrocarpus (P. Beauv.) Liben. | Aqueous and methanolic stem bark extract; Methanol extract containing: 52% of ellagic acid (10); Oral administration. | In vivo; Hot plate, formalin, acetic-acid-induced contortion, and capsaicin- and glutamate- induced pain tests; Acute toxicity. | Methanolic extract showed a reduction in the number of constrictions induced by acetic acid (72%, 200 mg kg−1); Formalin test: aqueous extract showed a better result in the 1st phase (69%, 200 mg kg−1); in the 2nd phase, the aqueous and methanolic extracts were more active at 400 mg kg−1, with 82 and 91%, respectively; Both extracts showed increased dose-dependent latency time in the hot plate test; Both extracts inhibited capsaicin-induced pain; Aqueous extract was more active in glutamate-induced pain tests (73% at 200 mg kg−1); Extracts showed no acute toxicity. | [45] |
| Petersianthus macrocarpus (P. Beauv.) Liben. | Stem bark methanol extract; Fractions from stem bark: aqueous, ethyl acetate, chloroform, and hexane; Stem bark containing: ellagic acid (10); Oral administration. | In vivo; Acetic-acid-induced contortion test; hot plate test. | Aqueous and ethyl acetate fractions (200 mg kg−1) exhibited 77.52% and 72.93% of inhibition effect in the writhing responses of the mice; Aqueous and ethyl acetate fractions (200 mg kg−1) exhibited more analgesic activity, 100.41% and 86.35%, respectively, in the hot plate teste. | [46] |
| Petersianthus macrocarpus (P. Beauv.) Liben. | Aqueous and methanolic stem bark extracts; Methanol extract containing: ellagic acid (10) as the major constituent; Oral administration. | In vivo; Chronic constriction nerve injury model; Nitric oxide activity; Expression of pro-inflammatory markers (TNF-α, IL-1β, and NF-κB genes). | Methanolic extract (200 mg kg−1) reduced the paw withdrawal frequency by 94.7%, effect greater than that of gabapentin; Methanolic extract (200 mg kg−1) reduced the paw licking time with maximal inhibitory effect of 82.6%, effect greater than that of gabapentin; In the tactile allodynia test, aqueous and methanolic extracts were active, 78% and 58.25%, respectively; Both extracts reduced the mechanical hyperalgesia; Methanolic extract (200 mg kg−1) inhibited the nitric oxide level and the gene expression levels of NF-κB and TNF-α in the brain. | [47] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fidelis, Q.C.; Trajano, L.P.B.; Pereira, E.C.; Dias, T.G.; Fernandes, T.F.; Ferreira, A.G.N.; Pereira, A.L.F.; Santos Neto, M.; Dutra, R.P.; Catunda-Junior, F.E.A. Promising Anti-Inflammatory Species from the Lecythidaceae Family: An Integrative Review. J. Pharm. BioTech Ind. 2025, 2, 18. https://doi.org/10.3390/jpbi2040018
Fidelis QC, Trajano LPB, Pereira EC, Dias TG, Fernandes TF, Ferreira AGN, Pereira ALF, Santos Neto M, Dutra RP, Catunda-Junior FEA. Promising Anti-Inflammatory Species from the Lecythidaceae Family: An Integrative Review. Journal of Pharmaceutical and BioTech Industry. 2025; 2(4):18. https://doi.org/10.3390/jpbi2040018
Chicago/Turabian StyleFidelis, Queli Cristina, Letícia Paula Benvindo Trajano, Efraim Costa Pereira, Tatielle Gomes Dias, Thamyres Freitas Fernandes, Adriana Gomes Nogueira Ferreira, Ana Lucia Fernandes Pereira, Marcelino Santos Neto, Richard Pereira Dutra, and Francisco Eduardo Aragão Catunda-Junior. 2025. "Promising Anti-Inflammatory Species from the Lecythidaceae Family: An Integrative Review" Journal of Pharmaceutical and BioTech Industry 2, no. 4: 18. https://doi.org/10.3390/jpbi2040018
APA StyleFidelis, Q. C., Trajano, L. P. B., Pereira, E. C., Dias, T. G., Fernandes, T. F., Ferreira, A. G. N., Pereira, A. L. F., Santos Neto, M., Dutra, R. P., & Catunda-Junior, F. E. A. (2025). Promising Anti-Inflammatory Species from the Lecythidaceae Family: An Integrative Review. Journal of Pharmaceutical and BioTech Industry, 2(4), 18. https://doi.org/10.3390/jpbi2040018

