Calcium Pyrophosphate and Basic Calcium Phosphate Deposition Diseases: The Year in Review 2022
Abstract
:1. Introduction
2. Calcium Pyrophosphate Deposition Disease
2.1. Epidemiology and Co-Morbidity
2.2. Clinical Observations
2.3. Imaging
2.4. Surgical Management of Patients with CPPD
3. BCP Crystals
3.1. Biological Effects In Vitro
3.2. Imaging
3.3. Cartilage Calcification and OA
3.4. Therapeutic Considerations
4. Future Directions
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- McCarthy, G.M.; Dunne, A. Calcium crystal deposition diseases—Beyond gout. Nat. Rev. Rheumatol. 2018, 14, 592–602. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Doherty, M.; Bardin, T.; Barskova, V.; Guerne, P.-A.; Jansen, T.L.; Leeb, B.F.; Perez-Ruiz, F.; Pimentao, J.; Punzi, L.; et al. European league against rheumatism recommendations for calcium pyrophosphate deposition. Part I: Terminology and diagnosis. Ann. Rheum. Dis. 2011, 70, 563–570. [Google Scholar] [CrossRef] [PubMed]
- Felson, D.T.; Anderson, J.J.; Naimark, A.; Kannel, W.; Meenan, R.F. The prevalence of chondrocalcinosis in the elderly and its association with knee osteoarthritis: The Framingham Study. J. Rheumatol. 1989, 16, 1241–1245. [Google Scholar] [PubMed]
- Martinon, F.; Pétrilli, V.; Mayor, A.; Tardivel, A.; Tschopp, J. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature 2006, 440, 237–241. [Google Scholar] [CrossRef]
- Ogdie, A.; Yu, Y.; Haynes, K.; Love, T.J.; Maliha, S.; Jiang, Y.; Troxel, A.B.; Hennessy, S.; E Kimmel, S.; Margolis, D.J.; et al. Risk of major cardiovascular events in patients with psoriatic arthritis, psoriasis and rheumatoid arthritis: A population-based cohort study. Ann. Rheum. Dis. 2015, 74, 326–332. [Google Scholar] [CrossRef]
- Choi, H.K.; Curhan, G. Independent impact of gout on mortality and risk for coronary heart disease. Circulation 2007, 116, 894–900. [Google Scholar] [CrossRef]
- Bashir, M.; Sherman, K.A.; Solomon, D.H.; Rosenthal, A.; Tedeschi, S.K. cardiovascular disease risk in calcium pyrophosphate deposition disease: A nationwide study of veterans. Arthritis Care Res. 2023, 75, 277–282. [Google Scholar] [CrossRef]
- Tedeschi, S.K.; Huang, W.; Yoshida, K.; Solomon, D.H. Risk of cardiovascular events in patients having had acute calcium pyrophosphate crystal arthritis. Ann. Rheum. Dis. 2022, 81, 1323–1329. [Google Scholar] [CrossRef]
- Liew, J.W.; Peloquin, C.; Tedeschi, S.K.; Felson, D.T.; Zhang, Y.; Choi, H.K.; Terkeltaub, R.; Neogi, T. Proton-Pump Inhibitors and Risk of Calcium Pyrophosphate Deposition in A Population-Based Study. Arthritis Care Res. 2022, 74, 2059–2065. [Google Scholar] [CrossRef]
- Gitelman, H.J.; Graham, J.B.; Welt, L.G. A new familial disorder characterized by hypokalemia and hypomagnesemia. Trans. Assoc. Am. Physicians 1966, 79, 221–235. [Google Scholar]
- Favero, M.; Calò, L.A.; Schiavon, F.; Punzi, L. Miscellaneous non-inflammatory musculoskeletal conditions. Bartter’s and Gitelman’s Diseases. Best. Pract. Res. Clin. Rheumatol. 2011, 25, 637–648. [Google Scholar] [CrossRef] [PubMed]
- Chotard, E.; Blanchard, A.; Ostertag, A.; Latourte, A.; Gailly, G.; Frochot, V.; Lioté, F.; Bousson, V.; Richette, P.; Bardin, T.; et al. Calcium pyrophosphate crystal deposition in a cohort of 57 patients with Gitelman syndrome. Rheumatology 2021, 61, 2494–2503. [Google Scholar] [CrossRef] [PubMed]
- Tedeschi, S.K.; Becce, F.; Pascart, T.; Guermazi, A.; Budzik, J.; Dalbeth, N.; Filippou, G.; Iagnocco, A.; Kohler, M.J.; Laredo, J.; et al. Imaging features of calcium pyrophosphate deposition (CPPD) disease: Consensus definitions from an international multidisciplinary working group. Arthritis Care Res. 2022, 75, 825–834. [Google Scholar] [CrossRef] [PubMed]
- Sirotti, S.; Becce, F.; Sconfienza, L.M.; Terslev, L.; Naredo, E.; Zufferey, P.; Pineda, C.; Gutierrez, M.; Adinolfi, A.; Serban, T.; et al. reliability and diagnostic accuracy of radiography for the diagnosis of calcium pyrophosphate deposition: Performance of the novel definitions developed by an international multidisciplinary working group. Arthritis Rheumatol. 2022, 75, 630–638. [Google Scholar] [CrossRef] [PubMed]
- Filippou, G.; Pacini, G.; Sirotti, S.; Zadory, M.; Carboni, D.; Damiani, A.; Fiorentini, E.; Cipolletta, E.; Filippucci, E.; Froehlich, J.M.; et al. Comparison of ultrasound attenuation by calcium pyrophosphate, hydroxyapatite and monosodium urate crystals: A proof-of-concept study. Ann. Rheum. Dis. 2022, 81, 1199–1201. [Google Scholar] [CrossRef]
- Cipolletta, E.; Di Matteo, A.; Smerilli, G.; Di Carlo, M.; Di Battista, J.; Abhishek, A.; Grassi, W.; Filippucci, E. Ultrasound findings of calcium pyrophosphate deposition disease at metacarpophalangeal joints. Rheumatology 2022, 61, 3997–4005. [Google Scholar] [CrossRef]
- Cipolletta, E.; Filippucci, E.; Abhishek, A.; Di Battista, J.; Smerilli, G.; Di Carlo, M.; Silveri, F.; De Angelis, R.; Salaffi, F.; Grassi, W.; et al. In patients with acute mono/oligoarthritis, a targeted ultrasound scanning protocol shows great accuracy for the diagnosis of gout and CPPD. Rheumatology 2022, 62, 1493–1500. [Google Scholar] [CrossRef]
- Kozinn, S.C.; Scott, R. Unicondylar knee arthroplasty. J. Bone Jt. Surg. Am. 1989, 71, 145–150. [Google Scholar] [CrossRef]
- Moret, C.S.; Iordache, E.; D’Ambrosi, R.; Hirschmann, M.T. Chondrocalcinosis does not affect functional outcome and prosthesis survival in patients after total or unicompartmental knee arthroplasty: A systematic review. Knee Surg. Sports Traumatol. Arthrosc. 2022, 30, 1039–1049. [Google Scholar] [CrossRef]
- Parperis, K.; Hadi, M.; Bhattarai, B. Outcomes and resource utilization in calcium pyrophosphate deposition disease patients who underwent total knee arthroplasty: A cross-sectional analysis. Clin. Rheumatol. 2022, 41, 1817–1824. [Google Scholar] [CrossRef]
- Chhana, A.; Pool, B.; E Callon, K.; Naot, D.; Gao, R.; Coleman, B.; Cornish, J.; McCarthy, G.M.; Dalbeth, N. Basic calcium phosphate crystals induce the expression of extracellular matrix remodelling enzymes in tenocytes. Rheumatology 2022, 62, 1343–1349. [Google Scholar] [CrossRef] [PubMed]
- Darrieutort-Laffite, C.; Blanchard, F.; Le Goff, B. Calcific tendonitis of the rotator cuff: From formation to resorption. Jt. Bone Spine 2018, 85, 687–692. [Google Scholar] [CrossRef]
- Herman, J.; Le Goff, B.; De Lima, J.; Brion, R.; Chevalier, C.; Blanchard, F.; Darrieutort-Laffite, C. Pro-inflammatory effects of human apatite crystals extracted from patients suffering from calcific tendinopathy. Arthritis Res. Ther. 2021, 23, 131. [Google Scholar] [CrossRef] [PubMed]
- Verhoeven, F.; Chouk, M.; Delcourt, C.; Prati, C.; Wendling, D. Tumorous calcinosis of the atlantoaxial joint: The helmeted dens syndrome. Ann. Rheum. Dis. 2022, 82, 302. [Google Scholar] [CrossRef] [PubMed]
- Yan, J.F.; Qin, W.P.; Xiao, B.C.; Wan, Q.Q.; Tay, F.R.; Niu, L.N.; Jiao, K. Pathological calcification in osteoarthritis: An outcome or a disease initiator? Biol. Rev. 2020, 95, 960–985. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Wu, Q.; Zhang, R.; Fan, Z.; Li, W.; Mao, R.; Du, Z.; Yao, X.; Ma, Y.; Yan, Y.; et al. Stage-specific and location-specific cartilage calcification in osteoarthritis development. Ann. Rheum. Dis. 2022, 82, 393–402. [Google Scholar] [CrossRef]
- Schinke, T.; Amendt, C.; Trindl, A.; Pöschke, O.; Müller-Esterl, W.; Jahnen-Dechent, W. The serum protein alpha2-HS glycoprotein/fetuin inhibits apatite formation in vitro and in mineralizing calvaria cells. A possible role in mineralization and calcium homeostasis. J. Biol. Chem. 1996, 271, 20789–20796. [Google Scholar] [CrossRef]
- Van den Akker, G.G.H.; Steijns, J.S.; Stassen, R.H.; Wasilewski, G.B.; Peeters, L.C.; Wijnands, K.A.; Schurgers, L.J.; Caron, M.M.; van Rhijn, L.L.; Welting, T.J. Development of a cyclic-inverso AHSG/Fetuin A-based peptide for inhibition of calcification in osteoarthritis. Osteoarthr. Cartil. 2022, 31, 727–740. [Google Scholar] [CrossRef]
- Abhishek, A.; Tedeschi, S.K.; Pascart, T.; Latourte, A.; Dalbeth, N.; Neogi, T.; Fuller, A.; Rosenthal, A.; Becce, F.; Bardin, T.; et al. The 2023 ACR/EULAR classification criteria for calcium pyrophosphate deposition disease. Ann. Rheum. Dis. 2023, 75, 1703–1713. [Google Scholar]
- Cai, K.; Fuller, A.; Zhang, Y.; Hensey, O.; Grossberg, D.; Christensen, R.; Shea, B.; Singh, J.A.; McCarthy, G.M.; Rosenthal, A.K.; et al. Towards development of core domain sets for short term and long term studies of calcium pyrophosphate crystal deposition (CPPD) disease: A framework paper by the OMERACT CPPD working group. Semin. Arthritis Rheum. 2021, 51, 946–950. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
McCarthy, G.M. Calcium Pyrophosphate and Basic Calcium Phosphate Deposition Diseases: The Year in Review 2022. Gout Urate Cryst. Depos. Dis. 2023, 1, 234-242. https://doi.org/10.3390/gucdd1040019
McCarthy GM. Calcium Pyrophosphate and Basic Calcium Phosphate Deposition Diseases: The Year in Review 2022. Gout, Urate, and Crystal Deposition Disease. 2023; 1(4):234-242. https://doi.org/10.3390/gucdd1040019
Chicago/Turabian StyleMcCarthy, Geraldine Mary. 2023. "Calcium Pyrophosphate and Basic Calcium Phosphate Deposition Diseases: The Year in Review 2022" Gout, Urate, and Crystal Deposition Disease 1, no. 4: 234-242. https://doi.org/10.3390/gucdd1040019
APA StyleMcCarthy, G. M. (2023). Calcium Pyrophosphate and Basic Calcium Phosphate Deposition Diseases: The Year in Review 2022. Gout, Urate, and Crystal Deposition Disease, 1(4), 234-242. https://doi.org/10.3390/gucdd1040019