Gout in Paleopathology: A Review with Some Etiological Considerations
Abstract
:1. Introduction
2. Epidemiology of Gout in Brief
3. Gout among Pre-Modern Populations
3.1. Criteria for Diagnosing Gout in the Skeleton
3.2. Gout in the ‘Old World’
3.3. Gout in the Pacific
4. Discussion
4.1. Gout Etiology in Past Populations
4.2. Gout and the Austronesian Link
4.3. Early Life Stress as a Contributor to Gout Development
4.4. Difficulties of Diagnosing Gout in the Skeleton
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jeong, Y.J.; Park, S.; Yon, D.K.; Lee, S.W.; Tizaoui, K.; Koyanagi, A.; Feng, B. Global Burden of Bout in 1990–2019: A Systematic Analysis of the Global Burden of Disease Study 2019. Eur. J. Clin. Investig. 2023, 7, e13937. [Google Scholar] [CrossRef] [PubMed]
- Dehlin, M.; Jacobsson, L.; Roddy, E. Global epidemiology of gout: Prevalence, incidence, treatment patterns and risk factors. Nat. Rev. Rheumatol. 2020, 16, 380–390. [Google Scholar] [CrossRef] [PubMed]
- Perez-Ruiz, F.; Martínez-Indart, L.; Carmona, L.; Herrero-Beites, A.M.; Pijoan, J.I.; Krishnan, E. Tophaceous gout and high level of hyperuricaemia are both associated with increased risk of mortality in patients with gout. Ann. Rheum. Dis. 2014, 73, 177–182. [Google Scholar] [CrossRef] [PubMed]
- Richette, P. Principles of Gout Management. In Oxford Textbook of Osteoarthritis and Crystal Arthropathy, 3rd ed.; Doherty, M., Bijlsma, J.W.J., Arden, N., Hunter, D., Dalbeth, N., Eds.; University Press: Oxford, UK, 2016; pp. 431–435. [Google Scholar]
- Lindsay, K.; Gow, P.; Vanderpyl, J.; Logo, P.; Dalbeth, N. The Experience and Impact of Living with Gout: A Study of Men with Chronic Gout Using a Qualitative Grounded Theory Approach. J. Clin. Rheumatol. 2011, 17, 1–6. [Google Scholar] [CrossRef]
- Buckley, H.R. Epidemiology of Gout: Perspectives from the Past. Curr. Rheumatol. Rev. 2011, 7, 106–113. [Google Scholar] [CrossRef]
- Nuki, G.; Simkin, P.A. A concise history of gout and hyperuricemia and their treatment. Thromb. Haemost. Res. Ther. 2006, 8, S1. [Google Scholar] [CrossRef]
- Graham, W.; Graham, K.M. Our Gouty Past. Can. Med. Assoc. J. 1955, 73, 485–493. [Google Scholar]
- Gritzalis, K.C.; Karamanou, M.; Androutsos, G. Gout in the writings of eminent ancient Greek and Byzantine physicians. Acta Med. Hist. Adriat. 2011, 9, 83–88. [Google Scholar]
- Bellwood, P.; Gamble, C.; Le Blanc, S.A.; Pluciennik, M.; Richards, M.; Terrell, J.E. First Farmers: The Origins of Agricultural Societies; Blackwell Pub: Malden, MA, USA, 2005. [Google Scholar]
- Singh, J.A.; Gaffo, A. Gout Epidemiology and Comorbidities. Semin. Arthritis Rheum. 2020, 50, S11–S16. [Google Scholar] [CrossRef]
- Elfishawi, M.M.; Zleik, N.; Kvrgic, Z.; Michet, C.J.; Crowson, C.S.; Matteson, E.L.; Bongartz, T. The Rising Incidence of Gout and the Increasing Burden of Comorbidities: A Population-based Study over 20 Years. J. Rheumatol. 2018, 45, 574–579. [Google Scholar] [CrossRef]
- Dao, H.H.; Harun-Or-Rashid, M.; Sakamoto, J. Body composition and metabolic syndrome in patients with primary gout in Vietnam. Rheumatology 2010, 49, 2400–2407. [Google Scholar] [CrossRef] [PubMed]
- Rho, Y.H.; Choi, S.J.; Lee, Y.H.; Ji, J.D.; Choi, K.M.; Baik, S.H.; Chung, S.-H.; Kim, C.-G.; Choe, J.-Y.; Lee, S.W.; et al. The Prevalence of Metabolic Syndrome in Patients with Gout: A Multicenter Study. J. Korean Med. Sci. 2005, 20, 1029–1033. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.K.; Ford, E.S.; Li, C.; Curhan, G. Prevalence of the metabolic syndrome in patients with gout: The Third National Health and Nutrition Examination Survey. Arthritis Rheum. 2007, 57, 109–115. [Google Scholar] [CrossRef] [PubMed]
- Liang, C.W.; Islam, M.d.M.; Poly, T.N.; Yang, H.C.; Jack Li, Y.C. Association between Gout and Cardiovascular Disease Risk: A Na-tion-wide Case-Control Study. Jt. Bone Spine. 2019, 86, 389–391. [Google Scholar] [CrossRef] [PubMed]
- Andrés, M.; Bernal, J.A.; Sivera, F.; Quilis, N.; Carmona, L.; Vela, P.; Pascual, E. Cardiovascular Risk of Patients with Gout Seen at Rheu-matology Clinics Following a Structured Assessment. Ann. Rheum. Dis. 2017, 76, 1263. [Google Scholar] [CrossRef]
- Disveld, I.J.; Fransen, J.; Rongen, G.A.; Kienhorst, L.B.; Zoakman, S.; Janssens, H.J.; Janssen, M. Crystal-proven Gout and Characteristic Gout Severity Factors Are Associated with Cardiovascular Disease. J. Rheumatol. 2018, 45, 858–863. [Google Scholar] [CrossRef]
- Zhao, R.; Wang, Y.; Fu, T.; Zhou, W.; Ge, X.; Sha, X.; Guo, J.; Dong, C.; Guo, G. Gout and risk of diabetes mellitus: Meta-analysis of observational studies. Psychol. Health Med. 2020, 25, 917–930. [Google Scholar] [CrossRef]
- Collier, A.; Stirling, A.; Cameron, L.; Hair, M.; Crosbie, D. Gout and diabetes: A common combination. Heart 2016, 92, 372–381. [Google Scholar] [CrossRef]
- Winnard, D.; Wright, C.; Jackson, G.; Gow, P.; Kerr, A.; McLachlan, A.; Dalbeth, N. Gout, Diabetes and Cardiovascular Disease in the Aotearoa New Zealand Adult Population: Co-Prevalence and Implications for Clinical Practice. N. Z. Med. J. 2013, 126, 53–64. [Google Scholar]
- Choi, H.K.; De Vera, M.A.; Krishnan, E. Gout and the risk of type 2 diabetes among men with a high cardiovascular risk profile. Rheumatology 2008, 47, 1567–1570. [Google Scholar] [CrossRef]
- Hu, S.C.S.; Lin, C.L.; Tu, H.P. Association between Psoriasis, Psoriatic Arthritis and Gout: A Nationwide Population-Based Study. J. Eur. Acad. Dermatol. Venereol. 2019, 33, 560–567. [Google Scholar] [CrossRef] [PubMed]
- Foody, J.; Turpin, R.S.; Tidwell, B.A.; Lawrence, D.; Schulman, K.L. Major Cardiovascular Events in Patients with Gout and Associated Cardiovascular Disease or Heart Failure and Chronic Kidney Disease Initiating a Xanthine Oxidase Inhibitor. Am. Health Drug Benefits 2017, 10, 393–401. [Google Scholar] [PubMed]
- Wang, W.; Bhole, V.M.; Krishnan, E. Chronic Kidney Disease as a Risk Factor for Incident Gout Among Men and Women: Ret-rospective Cohort Study Using Data from the Framingham Heart Study. BMJ Open 2015, 5, e006843. [Google Scholar] [CrossRef]
- Littlejohn, G.O.; Hall, S. Diffuse idiopathic skeletal hyperostosis and new bone formation in male gouty subjects. Rheumatol. Int. 1982, 2, 83–86. [Google Scholar] [CrossRef] [PubMed]
- Hilder, S.; Roddy, E. Epidemiology of gout. In Oxford Textbook of Osteoarthritis and Crystal Arthropathy; Doherty, M., Hunter, D.J., Bijlsma, H., Arden, N., Dalbeth, N., Eds.; Oxford University Press: Oxford, UK, 2016; pp. 383–389. [Google Scholar]
- Lesch, M.; Nyhan, W.L. A Familial Disorder of Uric Acid Metabolism and Central Nervous System Function. Am. J. Med. 1964, 36, 561–570. [Google Scholar] [CrossRef] [PubMed]
- Howell, R.R. The interrelationship of glycogen storage disease and gout. Arthritis Rheum. 1965, 8, 780–785. [Google Scholar] [CrossRef]
- Mikkelsen, W.M.; Dodge, H.; Valkenburg, H.; Himes, S. The distribution of serum uric acid values in a population unselected as to gout or hyperuricemia: Tecumseh, Michigan 1959–1960. Am. J. Med. 1965, 39, 242–251. [Google Scholar] [CrossRef]
- Neogi, T.; Jansen, T.L.T.A.; Dalbeth, N.; Fransen, J.; Schumacher, H.R.; Berendsen, D.; Vazquez-Mellado, J. 2015 Gout Classification Criteria: An American College of Rheumatology/European League Against Rheumatism Collaborative Initiative. Arthritis Rheumatol. 2015, 67, 2557–2568. [Google Scholar] [CrossRef]
- Dalbeth, N.; Aati, O.; Kalluru, R.; Gamble, G.D.; Horne, A.; Doyle, A.J.; McQueen, F.M. Relationship between structural joint damage and urate deposition in gout: A plain radiography and dual-energy CT study. Ann. Rheum. Dis. 2014, 74, 1030–1036. [Google Scholar] [CrossRef]
- Chhana, A.; Callon, K.E.; Pool, B.; Naot, D.; Watson, M.; Gamble, G.D.; Dalbeth, N. Monosodium Urate Monohydrate Crystals Inhibit Os-teoblast Viability and Function: Implications for Development of Bone Erosion in Gout. Ann. Rheum. Dis. 2011, 70, 1684–1691. [Google Scholar] [CrossRef]
- Singh, G.; Lingala, B.; Mithal, A. Gout and hyperuricaemia in the USA: Prevalence and trends. Rheumatology 2019, 58, 2177–2180. [Google Scholar] [CrossRef] [PubMed]
- Chang, S.; Ko, Y.; Wang, T.; Chang, F.; Cinkotai, F.; Chen, C. High Prevalence of Gout and Related Risk Factors in Taiwan’s Abo-rigines. J. Rheumatol. 1997, 24, 1364–1369. [Google Scholar] [PubMed]
- Stamp, L.K.; Wells, J.E.; Pitama, S.; Faatoese, A.; Doughty, R.N.; Whalley, G.; Richards, A.M.; Cameron, V.A. Hyperuricaemia and gout in New Zealand rural and urban Māori and non-Māori communities. Intern. Med. J. 2012, 43, 678–684. [Google Scholar] [CrossRef] [PubMed]
- Chang, H.Y.; Pan, W.H.; Yeh, W.T.; Tsai, K.-S. Hyperuricemia and gout in Taiwan: Results from the Nutritional and Health Survey in Taiwan (1993–1996). J. Rheumatol. 2001, 28, 1640–1646. [Google Scholar] [PubMed]
- Klemp, P.; Stansfield, S.A.; Castle, B.; Robertson, M.C. Gout is on the increase in New Zealand. Ann. Rheum. Diseases. 1997, 56, 22–26. [Google Scholar] [CrossRef]
- Kuo, C.F.; Grainge, M.J.; See, L.C.; Yu, K.H.; Luo, S.F.; Valdes, A.M.; Doherty, M. Familial Aggregation of Gout and Relative Genetic and Envi-ronmental Contributions: A Nationwide Population Study in Taiwan. Ann. Rheum. Dis. 2015, 74, 369. [Google Scholar] [CrossRef]
- Chou, C.T.; Lai, J.S. The epidemiology of hyperuricaemia and gout in Taiwan aborigines. Rheumatology 1998, 37, 258–262. [Google Scholar] [CrossRef]
- Lennane, G.A.Q.; Rose, B.S.; Isdale, I.C. Gout in the Maori. Ann. Rheum. Dis. 1960, 19, 120–125. [Google Scholar] [CrossRef]
- Winnard, D.; Wright, C.; Taylor, W.J.; Jackson, G.; Te Karu, L.; Gow, P.J.; Dalbeth, N. National Prevalence of Gout Derived from Adminis-trative Health Data in Aotearoa New Zealand. Rheumatology 2012, 51, 901–909. [Google Scholar] [CrossRef]
- Prior, I.; Rose, B.; Harvey, H.; Davidson, F. Hyperuricæmia, gout, and diabetic abnormality in polynesian people. Lancet 1966, 287, 333–338. [Google Scholar] [CrossRef]
- Jackson, L.; Taylor, R.; Faaiuso, S.; Ainuu, S.; Whitehouse, S.; Zimmet, P. Hyperuricaemia and gout in Western Samoans. J. Chronic Dis. 1981, 34, 65–75. [Google Scholar] [CrossRef] [PubMed]
- Major, T.J.; Dalbeth, N.; Stahl, E.A.; Merriman, T.R. An update on the genetics of hyperuricaemia and gout. Nat. Rev. Rheumatol. 2018, 14, 341–353. [Google Scholar] [CrossRef] [PubMed]
- Tanner, C.; Boocock, J.; Stahl, E.A.; Dobbyn, A.; Mandal, A.K.; Cadzow, M.; Phipps-Green, A.J.; Topless, R.K.; Hindmarsh, J.H.; Stamp, L.K.; et al. Population-Specific Resequencing Associates the ATP-Binding Cassette Subfamily C Member 4 Gene with Gout in New Zealand Māori and Pacific Men. Arthritis Rheumatol. 2017, 69, 1461–1469. [Google Scholar] [CrossRef] [PubMed]
- Phipps-Green, A.J.; Hollis-Moffatt, J.E.; Dalbeth, N.; Merriman, M.E.; Topless, R.; Gow, P.J.; Harrison, A.A.; Highton, J.; Jones, P.B.; Stamp, L.K.; et al. A strong role for the ABCG2 gene in susceptibility to gout in New Zealand Pacific Island and Caucasian, but not Māori, case and control sample sets. Hum. Mol. Genet. 2010, 19, 4813–4819. [Google Scholar] [CrossRef] [PubMed]
- Phipps-Green, A.J.; Merriman, M.E.; Topless, R.; Altaf, S.; Montgomery, G.W.; Franklin, C.; Jones, G.T.; van Rij, A.M.; White, D.; Stamp, L.K.; et al. Twenty-eight loci that influence serum urate levels: Analysis of association with gout. Ann. Rheum. Dis. 2016, 75, 124–130. [Google Scholar] [CrossRef] [PubMed]
- Tu, H.-P.; Ko, A.M.-S.; Chiang, S.-L.; Lee, S.-S.; Lai, H.-M.; Chung, C.-M.; Huang, C.-M.; Lee, C.-H.; Kuo, T.-M.; Hsieh, M.-J.; et al. Joint Effects of Alcohol Consumption and ABCG2 Q141K on Chronic Tophaceous Gout Risk. J. Rheumatol. 2014, 41, 749–758. [Google Scholar] [CrossRef]
- Zaidi, F.; Narang, R.K.; Phipps-Green, A.; Gamble, G.G.; Tausche, A.-K.; So, A.; Riches, P.; Andres, M.; Perez-Ruiz, F.; Doherty, M.; et al. Systematic genetic analysis of early-onset gout: ABCG2 is the only associated locus. Rheumatology 2020, 59, 2544–2549. [Google Scholar] [CrossRef]
- Nielsen, S.M.; Zobbe, K.; Kristensen, L.E.; Christensen, R. Nutritional Recommendations for Gout: An Update from Clinical Epi-demiology. Autoimmun. Rev. 2018, 17, 1090–1096. [Google Scholar] [CrossRef]
- Choi, H.K.; Liu, S.; Curhan, G. Intake of purine-rich foods, protein, and dairy products and relationship to serum levels of uric acid: The Third National Health and Nutrition Examination Survey. Arthritis Rheum. 2005, 52, 283–289. [Google Scholar] [CrossRef]
- Arthritis Society Home Page. Available online: https://arthritis.ca/ (accessed on 7 July 2022).
- UK Gout Society. All about Gout and Diet. Available online: http://www.ukgoutsociety.org/PDFs/goutsociety-allaboutgoutanddiet-0917.pdf (accessed on 5 July 2022).
- Ministry of Health New Zealand. Food and Nutrition Guidelines for Healthy Adults: A Background Paper; Ministry of Health: Wellington, New Zealand, 2003.
- Dalvi, S.R.; Pillinger, M.H. Saturnine Gout, Redux: A Review. Am. J. Med. 2013, 126, 450.e1–450.e8. [Google Scholar] [CrossRef]
- Halla, J.T.; Ball, G.V. Saturnine gout: A review of 42 patients. Semin. Arthritis Rheum. 1982, 11, 307–314. [Google Scholar] [CrossRef] [PubMed]
- Emmerson, B.T. The Clinical Differentiation of Lead Gout from Primary Gout. Arthritis Rheum. 1968, 11, 623–634. [Google Scholar] [CrossRef] [PubMed]
- Klaus, H.D.; Lynnerup, N. Abnormal Bone: Considerations for Documentation, Disease Process Identification, and Differential Diagnosis. In Ortner’s Identification of Pathological Conditions in Human Skeletal Remains, 2nd ed.; Buikstra, J.E., Ed.; Academic Press: London, UK, 2019; pp. 59–89. [Google Scholar]
- Waldron, T. Joint diseases. In Ortner’s Identification of Pathological Conditions in Human Skeletal Remains, 2nd ed.; Buikstra, J.E., Ed.; Academic Press: London, UK, 2019; pp. 719–748. [Google Scholar]
- Waldron, T. Palaeopathology; Cambridge University Press: New York, NY, USA, 2009. [Google Scholar]
- Brower, A.C.; Flemming, D.J. Arthritis in Black and White, 3rd ed.; Elsevier/Saunders: Philadelphia, PA, USA, 2012. [Google Scholar] [CrossRef]
- Resnick, D.; Niwayama, G. Diagnosis of Bone and Joint Disorders, 3rd ed.; Saunders: Philadelphia, PA, USA, 1995. [Google Scholar]
- Buikstra, J.E.; Ubelaker, D.H. Standards for Data Collection from Human Skeletal Remains: Proceedings of a Seminar at the Field Museum of Natural History, Organized by Jonathan Haas; Arkansas Archeological Survey: Fayetteville, AR, USA, 1994. [Google Scholar]
- Bogin, B. Patterns of Human Growth, 3rd ed.; Cambridge University Press: Cambridge, UK, 2020. [Google Scholar]
- O’Connell, L. Guidance on Recording Age at Death in Adult Human Skeletal Remains. In Updated Guidelines to the Standards for Recording Human Remains; Mitchell, P.D., Brickley, M., Eds.; Chartered Institute for Archaeologists: Reading, UK, 2017. [Google Scholar]
- Ling, N.Y. Skeletal Evidence of the Metabolic Syndrome and Early Life Stress in Mainland Asia. Ph.D. Thesis, University of Otago, Dunedin, New Zealand, 2022. [Google Scholar]
- Ordi, J.; Alonso, P.L.; de Zulueta, J.; Esteban, J.; Velasco, M.; Mas, E.; Campo, E.; Fernández, P.L. The Severe Gout of Holy Roman Emperor Charles, V.N. Engl. J. Med. 2006, 355, 516–520. [Google Scholar] [CrossRef] [PubMed]
- Limbrey, S.; Brickley, M.; Marques, C.; Swinson, D. Identification of urate crystals in gouty individuals. J. Archaeol. Sci. 2011, 38, 2497–2501. [Google Scholar] [CrossRef]
- Swinson, D.; Snaith, J.; Buckberry, J.; Brickley, M. High performance liquid chromatography (HPLC) in the investigation of gout in palaeopathology. Int. J. Osteoarchaeol. 2008, 20, 135–143. [Google Scholar] [CrossRef]
- Taylor, W.J.; Fransen, J.; Jansen, T.L.; Dalbeth, N.; Schumacher, H.R.; Brown, M.; Louthrenoo, W.; Vazquez-Mellado, J.; Eliseev, M.; McCarthy, G.; et al. Study for Updated Gout Classification Criteria: Identification of Features to Classify Gout. Arthritis Care Res. 2015, 67, 1304–1315. [Google Scholar] [CrossRef] [PubMed]
- Towiwat, P.; Chhana, A.; Dalbeth, N. The anatomical pathology of gout: A systematic literature review. BMC Musculoskelet. Disord. 2019, 20, 140. [Google Scholar] [CrossRef]
- Yokose, C.; Dalbeth, N.; Wei, J.; Nicolaou, S.; Simeone, F.J.; Baumgartner, S.; Fung, M.; Zhang, Y.; Choi, H.K. Radiologic evidence of symmetric and polyarticular monosodium urate crystal deposition in gout—A cluster pattern analysis of dual-energy CT. Semin. Arthritis Rheum. 2020, 50, 54–58. [Google Scholar] [CrossRef]
- Doyle, A.J.; Dalbeth, N.; McQueen, F.; Boyer, L.; Dong, J.; Rome, K.; Frecklington, M. Gout on CT of the Feet: A Symmetric Arthropathy. J. Med. Imaging Radiat. Oncol. 2016, 60, 54–58. [Google Scholar] [CrossRef]
- Smith, G.E.; Dawson, W.R. Egyptian Mummies; Routledge and Kegan Paul: New York, NY, USA, 2002. [Google Scholar]
- Buckley, H.R. Possible Gouty Arthritis in Lapita-Associated Skeletons from Teouma, Efate Island, Central Vanuatu. Curr. Anthropol. 2007, 48, 741–749. [Google Scholar] [CrossRef]
- Fornaciari, G.; Giuffra, V.; Giusiani, S.; Fornaciari, A.; Villari, N.; Vitiello, A. The ‘gout’ of the Medici, Grand Dukes of Florence: A palaeopathological study. Rheumatology 2009, 48, 375–377. [Google Scholar] [CrossRef]
- Rothschild, B.M.; Heathcote, G.M. Characterization of gout in a skeletal population sample: Presumptive diagnosis in a Micro-nesian Population. Am. J. Phys. Anthropol. 1995, 98, 519–525. [Google Scholar] [CrossRef] [PubMed]
- Fornaciari, A.; Giuffra, V.; Armocida, E.; Caramella, D.; Rühli, F.J.; Galassi, F.M. Gout in Duke Federico of Montefeltro (1422-1482): A new pearl of the Italian Renaissance. Clin. Exp. Rheumatol. 2018, 36, 15–20. [Google Scholar] [PubMed]
- Dittmar, J.M.; Mitchell, P.D.; Jones, P.M.; Mulder, B.; Inskip, S.A.; Cessford, C.; Robb, J.E. Gout and ‘Podagra’ in Medieval Cambridge, England. Int. J. Paleopathol. 2021, 33, 170–181. [Google Scholar] [CrossRef]
- Robb, J.; Inskip, S.A.; Cessford, C.; Dittmar, J.; Kivisild, T.; Mitchell, P.D.; Scheib, C. Osteobiography: The History of the Body as Real Bottom-Line History. Bioarchaeol. Int. 2019, 3, 16–31. [Google Scholar] [CrossRef] [PubMed]
- Jones, R.F.J.; McWhirr, A.; Viner, L.; Wells, C. Romano-British Cemeteries at Cirencester. Britannia 1985, 16, 349. [Google Scholar] [CrossRef]
- Wells, C. A Palaeopathological Rarity in a Skeleton of Roman Date. Med. Hist. 1973, 17, 399–400. [Google Scholar] [CrossRef]
- Waldron, T. Human Bone Lead Concentrations. In Romano-British Cemeteries at Cirencester; Cirencester Excavation Committee, Corinium Museum: Cirencester, UK, 1982. [Google Scholar]
- Rothschild, B.; Coppa, A.; Petrone, P. “Like a virgin”: Absence of rheumatoid arthritis and treponematosis, good sanitation and only rare gout in Italy prior to the 15th century. Reumatismo 2011, 56, 61–66. [Google Scholar] [CrossRef]
- Bilsborough, A.; Angel, J.L. The People of Lerna: Analysis of a Prehistoric Aegean Population; American School of Classical Studies at Athens, Smithsonian Institution Press: Princeton, NJ, USA; Washington, DC, USA, 1972; Volume 7, p. 487. [Google Scholar] [CrossRef]
- Inoue, K.; Hukuda, S.; Nakai, M.; Katayama, K. Erosive Arthritis of the Foot with Characteristic Features of Tophaceous Gout in the Jomon Skeletal Population. Anthr. Sci. 1998, 106, 221–228. [Google Scholar] [CrossRef]
- Imamura, K. Prehistoric Japan: New Perspectives on Insular East Asia; UCL Press: London, UK, 1996. [Google Scholar]
- Pietrusewsky, M.; Douglas, M.T. Ban Chiang, a Prehistoric Village Site in Northeast Thailand, Volume 1: The Human Skeletal Remains; University of Pennsylvania Museum of Archaeology: Philadelphia, PA, USA, 2002. [Google Scholar]
- Suzuki, T. Paleopathological and Paleoepidemiological Investigation of Human Skeletal Remains of Early Hawaiians from Mokapu Site, Oahu Island, Hawaii. Jpn. Rev. 1993, 4, 83–128. [Google Scholar]
- Buckley, H.R.; Tayles, N.; Halcrow, S.E.; Robb, K.; Fyfe, R. View of The People of Wairau Bar: A Re-examination. J. Pac. Archaeol. 2010, 1, 1–20. [Google Scholar]
- Fornaciari, G.; Marinozzi, S.; Messineo, D.; Caldarini, C.; Zavaroni, F.; Iorio, S.; Sveva, L.; Capuani, S.; Catalano, P.; Gazzaniga, V. A remarkable case of gout in the Imperial Rome: Surgery and diseases in antiquity by osteoarchaeological, paleopathological, and historical perspectives. Int. J. Osteoarchaeol. 2019, 29, 797–807. [Google Scholar] [CrossRef]
- Giuffra, V.; Minozzi, S.; Vitiello, A.; Fornaciari, A. On the history of gout: Paleopathological evidence from the Medici family of Florence. Clin. Exp. Rheumatol. 2017, 35, 321–326. [Google Scholar] [PubMed]
- Minozzi, S.; Bianchi, F.; Pantano, W.; Pantano, P.; Caramella, D.; Fornaciari, G. A Case of Gout from Imperial Rome (1st–2nd Century AD). J. Clin. Res. Bioeth. 2013, 4, 1000162. [Google Scholar]
- Rogers, J.; Watt, I.; Dieppe, P. Medical History: Arthritis in Saxon and mediaeval skeletons. BMJ 1981, 283, 1668–1670. [Google Scholar] [CrossRef]
- Roberts, C.A.; Cox, M. Health & Disease in Britain: From Prehistory to the Present Day; Sutton Publishing: Gloucester, UK, 2003. [Google Scholar]
- Waldron, T. Barton-Upon-Humber, Lincolnshire: A Parish Church and its Community: The Human Remains; Oxbow Books: Oxford, UK, 2007; Volume 2. [Google Scholar]
- Daniels, R. The Excavation of the Church of the Franciscans, Hartlepool, Cleveland. Archaeol. J. 1986, 143, 260–304. [Google Scholar] [CrossRef]
- Randerson, M.J.; Watson, J.E.; Graham, D.J.; Caffell, A.; Cumberpatch, C.; Gidney, L.; Gutiérrez, A.; Jones, J.; Nolan, J. Archaeological Investigations at Priory Close, Northallerton, North Yorkshire. Yorks. Archaeol. J. 2015, 87, 37–64. [Google Scholar] [CrossRef]
- Bourbou, C. Health patterns of proto-Byzantine populations (6th-7th centuries AD) in south Greece: The cases of Eleutherna (Crete) and Messene (Peloponnese). Int. J. Osteoarchaeol. 2003, 13, 303–313. [Google Scholar] [CrossRef]
- Dalbeth, N.; McLean, L. Etiology and Pathogenesis of Gout. In Rheumatology, 7th ed.; Hochberg, M.C., Gravallese, E.M., Silman, A.J., Smolen, J.S., Weinblatt, M.E., Weisman, M.H., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 1598–1609. [Google Scholar]
- Merriman, T. The Genetic Basis of Gout. In Oxford Textbook of Osteoarthritis and Crystal Arthropathy; Doherty, M., Hunter, D.J., Bijlsma, H., Arden, N., Dalbeth, N., Eds.; University Press: Oxford, UK, 2016; pp. 401–410. [Google Scholar]
- Merriman, T. Genomic Influences on Hyperuricemia and Gout. Rheum. Dis. Clin. North Am. 2017, 43, 389–399. [Google Scholar] [CrossRef]
- Krishnan, E.; Lessov-Schlaggar, C.N.; Krasnow, R.E.; Swan, G.E. Nature Versus Nurture in Gout: A Twin Study. Am. J. Med. 2012, 125, 499–504. [Google Scholar] [CrossRef]
- Neel, J.V. Diabetes Mellitus: A “Thrifty” Genotype Rendered Detrimental by “Progress”? Am. J. Hum. Genet. 1962, 14, 353–362. [Google Scholar] [PubMed]
- Manus, M.B. Evolutionary Mismatch. Evol. Med. Public Health 2018, 2018, 190–191. [Google Scholar] [PubMed]
- Gosling, A.L.; Buckley, H.R.; Matisoo-Smith, E.; Merriman, T.R. Pacific Populations, Metabolic Disease and ‘Just-So Stories’: A Cri-tique of the ‘Thrifty Genotype’ Hypothesis in Oceania. Ann. Hum. Genet. 2015, 79, 470–480. [Google Scholar] [PubMed]
- Gosling, A.; Matisoo-Smith, E.; Merriman, T. Hyperuricaemia in the Pacific: Why the Elevated Serum Urate Levels? Rheumatol. Int. 2013, 34, 743–757. [Google Scholar]
- Knapp, M.; Horsburgh, K.A.; Prost, S.; Stanton, J.-A.; Buckley, H.R.; Walter, R.K.; Matisoo-Smith, E.A. Complete mitochondrial DNA genome sequences from the first New Zealanders. Proc. Natl. Acad. Sci. USA 2012, 109, 18350–18354. [Google Scholar] [CrossRef]
- Buckley, H.R.; Buikstra, J.E. Stone Agers in the Fast Lane? How Bioarchaeologists Can Address the Paleo Diet Myth. In Bioarchaeologists Speak out: Deep Time Perspectives on Contemporary Issues; Buikstra, J.E., Ed.; Springer International Publishing: Cham, Scwitzernald, 2019; pp. 161–180. [Google Scholar] [CrossRef]
- Wells, J.C.; Ling, N.Y.; Stock, J.T.; Buckley, H.; Leonard, W.R. Metabolic Diseases in Bioarchaeology: An Evolutionary Medicine Approach. Palaeopathology and Evolutionary Medicine: An Integrated Approach. In Palaeopathology and Evolutionary Medicine: An Integrated Approach, 1st ed.; Plomp, K.A., Roberts, C.A., Elton, S., Bentley, G.R., Eds.; Oxford University Press: Oxford, UK, 2022; pp. 284–302. [Google Scholar]
- Rogers, J.; Waldron, T. DISH and the Monastic Way of Life. Int. J. Osteoarchaeol. 2001, 11, 357–365. [Google Scholar]
- Verlaan, J.J.; Oner, F.C.; Maat, G.J.R. Diffuse idiopathic skeletal hyperostosis in ancient clergymen. Eur. Spine, J. 2007, 16, 1129–1135. [Google Scholar] [CrossRef]
- Kerr, J. Life in the Medieval Cloister; Bloomsbury Publishing: London, UK, 2009. [Google Scholar]
- Waldron, T. DISH at Merton Priory: Evidence for a “New” Occupational Disease? BMJ 1985, 291, 1762–1763. [Google Scholar]
- Foster, A.; Kinaston, R.; Spriggs, M.; Bedford, S.; Gray, A.; Buckley, H. Possible diffuse idiopathic skeletal hyperostosis (DISH) in a 3000-year-old Pacific Island skeletal assemblage. J. Archaeol. Sci. Rep. 2018, 18, 408–419. [Google Scholar] [CrossRef]
- Quintelier, K.; Ervynck, A.; Müldner, G.; Van Neer, W.; Richards, M.P.; Fuller, B.T. Isotopic examination of links between diet, social differentiation, and DISH at the post-medieval Carmelite Friary of Aalst, Belgium. Am. J. Phys. Anthr. 2014, 153, 203–213. [Google Scholar] [CrossRef]
- Faccia, K.; Waters-Rist, A.; Lieverse, A.R.; Bazaliiskii, V.I.; Stock, J.T.; Katzenberg, M.A. Diffuse idiopathic skeletal hyperostosis (DISH) in a middle Holocene forager from Lake Baikal, Russia: Potential causes and the effect on quality of life. Quat. Int. 2016, 405, 66–79. [Google Scholar] [CrossRef]
- Oxenham, M.F.; Matsumura, H.; Nishimoto, T. Diffuse idiopathic skeletal hyperostosis in Late Jomon Hokkaido, Japan. Int. J. Osteoarchaeol. 2006, 16, 34–46. [Google Scholar] [CrossRef]
- Bateman, M.; Hapuarachchi, K.; Pinto, C.; Doyle, A.J. Diffuse idiopathic skeletal hyperostosis (DISH): Increased prevalence in Pacific Islanders. J. Med. Imaging Radiat. Oncol. 2018, 62, 188–193. [Google Scholar] [CrossRef]
- Lipson, M.; Loh, P.-R.; Patterson, N.; Moorjani, P.; Ko, Y.-C.; Stoneking, M.; Berger, B.; Reich, D. Reconstructing Austronesian population history in Island Southeast Asia. Nat. Commun. 2014, 5, 4689. [Google Scholar] [CrossRef] [PubMed]
- Lipson, M.; Cheronet, O.; Mallick, S.; Rohland, N.; Oxenham, M.; Pietrusewsky, M.; Pryce, T.O.; Willis, A.; Matsumura, H.; Buckley, H.; et al. Ancient genomes document multiple waves of migration in Southeast Asian prehistory. Science 2018, 361, 92–95. [Google Scholar] [CrossRef] [PubMed]
- Hales, C.N.; Barker, D.J.P. Type 2 (non-insulin-dependent) diabetes mellitus: The thrifty phenotype hypothesis. Diabetologia 1992, 35, 595–601. [Google Scholar] [CrossRef]
- Gluckman, P.D.; Hanson, M.A.; Spencer, H.G. Predictive adaptive responses and human evolution. Trends Ecol. Evol. 2005, 20, 527–533. [Google Scholar] [CrossRef]
- Wells, J.C.K. The Metabolic Ghetto: An Evolutionary Perspective on Nutrition, Power Relations and Chronic Disease; Cambridge University Press: Cambridge, UK, 2016. [Google Scholar]
- Roseboom, T.; de Rooij, S.; Painter, R. The Dutch famine and its long-term consequences for adult health. Early Hum. Dev. 2006, 82, 485–491. [Google Scholar] [CrossRef]
- Meng, R.; Yu, C.; Guo, Y.; Bian, Z.; Si, J.; Nie, J.; Yang, L.; Chen, Y.; Du, H.; Zhou, L.; et al. Early famine exposure and adult disease risk based on a 10-year prospective study of Chinese adults. Heart 2020, 106, 213–220. [Google Scholar] [CrossRef]
- Shi, Z.; Nicholls, S.J.; Taylor, A.W.; Magliano, D.J.; Appleton, S.; Zimmet, P. Early Life Exposure to Chinese Famine Modifies the Association between Hypertension and Cardiovascular Disease. J. Hypertens. 2018, 36, 54–60. [Google Scholar] [CrossRef]
- Lv, S.; Shen, Z.; Zhang, H.; Yu, X.; Chen, J.; Gu, Y.; Ding, X.; Zhang, X. Association between exposure to the Chinese famine during early life and the risk of chronic kidney disease in adulthood. Environ. Res. 2020, 184, 109312. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Chen, Y.; Ning, Z.; Li, Q.; Han, B.; Zhu, C.; Chen, Y.; Xia, F.; Jiang, B.; Wang, B.; et al. Exposure to famine in early life and non-alcoholic fatty liver disease in adulthood. J. Clin. Endocrinol. Metab. 2016, 101, 2218–2225. [Google Scholar] [CrossRef] [PubMed]
- Eriksson, J.G.; Forsén, T.; Tuomilehto, J.; Osmond, C.; Barker, D.J.P. Early growth and coronary heart disease in later life: Longitudinal study. BMJ 2001, 322, 949–953. [Google Scholar] [CrossRef]
- Eriksson, J.G. Early growth and coronary heart disease and type 2 diabetes: Findings from the Helsinki Birth Cohort Study (HBCS). Am. J. Clin. Nutr. 2011, 94, S1799–S1802. [Google Scholar] [CrossRef] [PubMed]
- Yajnik, C.S. Early Life Origins of Insulin Resistance and Type 2 Diabetes in India and Other Asian Countries. J. Nutr. 2004, 134, 205–210. [Google Scholar] [CrossRef] [PubMed]
- Margolis, R. The Effects of Early Childhood Diseases on Young Adult Health in Guatemala. PARC Work. Pap. Ser. 2008, 20, 1–30. [Google Scholar]
- Randell, H.; Gray, C.; Grace, K. Stunted from the start: Early life weather conditions and child undernutrition in Ethiopia. Soc. Sci. Med. 2020, 261, 113234. [Google Scholar] [CrossRef]
- Wells, J.C.K.; Devakumar, D.; Manandhar, D.S.; Saville, N.; Chaube, S.S.; Costello, A.; Osrin, D. Associations of stunting at 2 years with body composition and blood pressure at 8 years of age: Longitudinal cohort analysis from lowland Nepal. Eur. J. Clin. Nutr. 2019, 73, 302–310. [Google Scholar] [CrossRef]
- Swenne, I.; Crace, C.J.; Milner, R.D.G. Persistent Impairment of Insulin Secretory Response to Glucose in Adult Rats After Limited Period of Protein-Calorie Malnutrition Early in Life. Diabetes 1987, 36, 454–458. [Google Scholar] [CrossRef]
- Visker, J.R.; Ferguson, D.P. Postnatal Undernutrition in Mice Causes Cardiac Arrhythmogenesis which is Exacerbated when Pharmacologically Stressed. J. Dev. Orig. Health Dis. 2018, 9, 417–424. [Google Scholar] [CrossRef]
- Pomeroy, E.; Stock, J.T.; Stanojevic, S.; Miranda, J.J.; Cole, T.J.; Wells, J.C.K. Trade-Offs in Relative Limb Length among Peruvian Children: Extending the Thrifty Phenotype Hypothesis to Limb Proportions. PLoS ONE 2012, 7, e51795. [Google Scholar] [CrossRef] [PubMed]
- Gluckman, P.D.; Buklijas, T.; Hanson, M.A. The Developmental Origins of Health and Disease (DOHaD) Concept. In The Epigenome and Developmental Origins of Health and Disease; Elsevier: Amsterdam, The Netherlands, 2016; pp. 1–15. [Google Scholar]
- Bobulescu, I.A.; Moe, O.W. Renal Transport of Uric Acid: Evolving Concepts and Uncertainties. Adv. Chronic Kidney Dis. 2012, 19, 358–371. [Google Scholar] [CrossRef] [PubMed]
- Temple, D.H. Patterns of systemic stress during the agricultural transition in prehistoric Japan. Am. J. Phys. Anthr. 2009, 142, 112–124. [Google Scholar] [CrossRef] [PubMed]
- Halcrow, S.E.; Tayles, N.; King, C.L. Infant and Child Health and Disease with Agricultural Intensification in Mainland Southeast Asia. In The Routledge Handbook of Bioarchaeology in Southeast Asia and the Pacific Islands; Oxenham, M., Buckley, H., Eds.; Taylor and Francis: Florence, SC, USA, 2016; pp. 158–188. [Google Scholar]
- Zhu, L.; Wu, H.; Wu, X.; Sun, W.; Zhang, T.; Ye, L.; Wang, W.; Wang, J. Comparison Between Dual-Energy Computed Tomography and Ultrasound in the Diagnosis of Gout of Various Joints. Acad. Radiol. 2015, 22, 1497–1502. [Google Scholar] [CrossRef]
- Shang, J.; Zhou, L.-P.; Wang, H.; Liu, B. Diagnostic Performance of Dual-energy CT Versus Ultrasonography in Gout: A Meta-analysis. Acad. Radiol. 2022, 29, 56–68. [Google Scholar] [CrossRef]
- Li, B.; Singer, N.G.; Yeni, Y.N.; Haggins, D.G.; Barnboym, E.; Oravec, D.; Akkus, O. A Point-of-Care Raman Spectroscopy–Based Device for the Diagnosis of Gout and Pseudogout. Arthritis Rheumatol. 2016, 68, 1751–1757. [Google Scholar] [CrossRef]
- Hadler, N.M.; Franck, W.A.; Bress, N.M.; Robinson, D.R. Acute Polyarticular Gout. Am. J. Med. 1974, 56, 715–719. [Google Scholar] [CrossRef]
Location | Study | Date/Period | Gout Cases (n/N *) | Individual/s | References |
---|---|---|---|---|---|
El Escorial, Spain | Individual | 1516–1556 AD | 1 | Holy Roman Emperor Charles V | [68] |
Rome, Italy | Individual | Roman Imperial Period | 1 | Tomb 75, old adult female | [92] |
Urbino, Italy | Individual | 1422–1482 AD | 1 | Federico of Montefeltro, Duke of Urbino | [79] |
Florence, Italy | Individual | 1549–1609 AD | 1 | Ferdinand I, 3rd Grand Duke of Tuscany | [77] |
Florence, Italy | Individual/also collection | 1618–1659 AD | 1 | Anton Francesco Maria, adult male | [93] |
Rome, Italy | Individual | 1st–2nd century AD | 1 | Adult female, 35–45 yo | [94] |
Cambridge, UK | Individual | 1195–1511 AD | 1 | Old male | [81] |
Herculaneum, Italy | Collection | 1st century AD | 1/75 | No information | [85] |
Porto Recanati, Italy | Collection | 1st century BC–3rd century AD | 1/79 | No information | [85] |
Cirencester, UK | Collection | Romano-British period, ~150 AD | 3/384 | Males | [82,83] |
Trowbridge, UK | Collection | Saxon period, 9–11th century AD | 1/50 | Male | [95] |
Poundbury, UK | Collection | Roman Period | 5 | 3 males, 2 females | [96] |
St. Peters’ Church, Barton-on-Humber UK | Collection | 950–1855 AD | 10/1938 (15 yo+) | 4 males, 3 females, 3 unknowns | [97] |
Various, UK | Individuals | 14th–19th century AD | 5 | 4 old adult males, 1 old adult female | [70] |
Cambridge, UK | Collection | Medieval | 6/177 | 4 young to old adult males, 1 female middle adult, 1 adult unknown sex | [80] |
Hartlepool, UK | Collection | 13th to 16th century AD | 1/93 | Middle-aged male | [98] |
Northallerton, UK | Collection, Carmelite Priory | 14th to 16th century AD | 1–2/7 | 2 adult males | [99] |
Messene, Greece | Collection | 5th–7th century AD | 2/74 | 2 young adults, unknown sex | [100] |
Lerna, Greece | Collection | Middle Bronze Age, 2000–1600 BC | 1/102 | 35 yo, Male; 70 LER, Burial BE-18 | [86] |
Egypt | Individual | Early Christian | 1 | Old adult, Male | [75] |
Ohta, Western Japan | Collection, Kiyono | 4500–3500 BP, Middle Jomon | 1/45 | Middle-aged, adult male | [87] |
Ban Chiang, Thailand | Collection | 2100 BC to 200 AD | 2/104 (15 yo+) | 20–25 yo female, 45–50 yo male | [89] |
Mokapu, Hawai’i | Collection | “pre-European” | 1/349 | Male, mid-thirties | [90] |
Teouma site, Vanuatu | Collection, Lapita | ~3000 BP | 7/20 | Males | [76] |
Chamorro, Guam | Collection | 950–1450 AD | 15/268 | 7 females, 8 males | [78] |
Wairau Bar, New Zealand | Collection | ~1288–1300 AD | 6/42 | 3 young to middle adult males, 3 middle to old adult males | [91] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ling, N.Y.; Halcrow, S.E.; Buckley, H.R. Gout in Paleopathology: A Review with Some Etiological Considerations. Gout Urate Cryst. Depos. Dis. 2023, 1, 217-233. https://doi.org/10.3390/gucdd1040018
Ling NY, Halcrow SE, Buckley HR. Gout in Paleopathology: A Review with Some Etiological Considerations. Gout, Urate, and Crystal Deposition Disease. 2023; 1(4):217-233. https://doi.org/10.3390/gucdd1040018
Chicago/Turabian StyleLing, Nellissa Y., Siân E. Halcrow, and Hallie R. Buckley. 2023. "Gout in Paleopathology: A Review with Some Etiological Considerations" Gout, Urate, and Crystal Deposition Disease 1, no. 4: 217-233. https://doi.org/10.3390/gucdd1040018
APA StyleLing, N. Y., Halcrow, S. E., & Buckley, H. R. (2023). Gout in Paleopathology: A Review with Some Etiological Considerations. Gout, Urate, and Crystal Deposition Disease, 1(4), 217-233. https://doi.org/10.3390/gucdd1040018