Sub-Antarctic Macroalgae as Feed Ingredients for Sustainable Ruminant Production: In Vitro Total Gas and Methane Production
Abstract
1. Introduction
2. Results
3. Discussion
4. Materials and Methods
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rauw, W.M.; Gómez Izquierdo, E.; Torres, O.; García Gil, M.; de Miguel Beascoechea, E.; Rey Benayas, J.M.; Gomez-Raya, L. Future farming: Protein production for livestock feed in the EU. Sustain. Earth Rev. 2023, 6, 3. [Google Scholar] [CrossRef]
- Pandey, D.; Mansouryar, M.; Novoa-Garrido, M.; Næss, G.; Kiron, V.; Hansen, H.; Khanal, P. Nutritional and Anti-Methanogenic Potentials of Macroalgae for Ruminants; Burleigh Dodds Science Publishing: Sawston, UK, 2021. [Google Scholar]
- Bačėninaitė, D.; Džermeikaitė, K.; Antanaitis, R. Global warming and dairy cattle: How to control and reduce methane emission. Animals 2022, 12, 2687. [Google Scholar] [CrossRef]
- Palangi, V.; Taghizadeh, A.; Abachi, S.; Lackner, M. Strategies to mitigate enteric methane emissions in ruminants: A review. Sustainability 2022, 14, 13229. [Google Scholar] [CrossRef]
- Giamouri, E.; Zisis, F.; Mitsiopoulou, C.; Christodoulou, C.; Pappas, A.C.; Simitzis, P.E.; Tsiplakou, E. Sustainable strategies for greenhouse gas emission reduction in small ruminants farming. Sustainability 2023, 15, 4118. [Google Scholar] [CrossRef]
- Shinkai, T.; Takizawa, S.; Fujimori, M.; Mitsumori, M. The role of rumen microbiota in enteric methane mitigation for sustainable ruminant production. Anim. Biosci. 2024, 37, 360. [Google Scholar] [CrossRef]
- United Nations (UN). Paris Agreement to the United Nations Framework Convention on Climate Change; Dec. 12, T.I.A.S. No. 16-1104; United Nations (UN): New York, NY, USA, 2015.
- Sofyan, A.; Irawan, A.; Herdian, H.; Harahap, M.A.; Sakti, A.A.; Suryani, A.E.; Jayanegara, A. Effects of various macroalgae species on methane production, rumen fermentation, and ruminant production: A meta-analysis from in vitro and in vivo experiments. Anim. Feed Sci. Technol. 2022, 294, 115503. [Google Scholar] [CrossRef]
- Abbott, D.W.; Aasen, I.M.; Beauchemin, K.A.; Grondahl, F.; Gruninger, R.; Hayes, M.; Xing, X. Seaweed and seaweed bioactives for mitigation of enteric methane: Challenges and opportunities. Animals 2020, 10, 2432. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Zhao, G. Decreasing ruminal methane production through enhancing the sulfate reduction pathway. Anim. Nutr. 2022, 9, 320–326. [Google Scholar] [CrossRef]
- Ahmed, E.; Suzuki, K.; Nishida, T. Micro-and macro-algae combination as a novel alternative ruminant feed with methane-mitigation potential. Animals 2023, 13, 796. [Google Scholar] [CrossRef] [PubMed]
- Rahikainen, M.; Samson, R.; Yang, B. Global Production of Macroalgae and Uses as Food, Dietary Supplements and Food Additives; Project Report, Growing Algae Sustainably in the Baltic Sea (GRASS), Interreg Baltic Sea Region, European Regional Development Fund; 2021; Available online: https://submariner-network.eu/wp-content/uploads/2024/01/Seaweed_usage_GRASS_MR_03092021.pdf (accessed on 22 August 2024).
- Wasson, D.E.; Stefenoni, H.; Cueva, S.F.; Lage, C.; Räisänen, S.E.; Melgar, A.; Hristov, A.N. Screening macroalgae for mitigation of enteric methane in vitro. Sci. Rep. 2023, 13, 9835. [Google Scholar] [CrossRef]
- McGurrin, A.; Maguire, J.; Tiwari, B.K.; Garcia-Vaquero, M. Anti-methanogenic potential of seaweeds and seaweed-derived compounds in ruminant feed: Current perspectives, risks and future prospects. J. Anim. Sci. Biotechnol. 2023, 14, 145. [Google Scholar] [CrossRef]
- McCauley, J.I.; Labeeuw, L.; Jaramillo-Madrid, A.C.; Nguyen, L.N.; Nghiem, L.D.; Chaves, A.V.; Ralph, P.J. Management of enteric methanogenesis in ruminants by algal-derived feed additives. Curr. Pollut. Rep. 2020, 6, 188–205. [Google Scholar] [CrossRef]
- Jofre, J.; Dubrasquet, H.; Ramírez, M.E.; Navarro, N.P.; Macaya, E.C. Subantartic Macroalgae Guide: Magallanes and Chilean Antarctica Region, 1st ed.; Thermo Fisher Scientific: Punta Arenas, Chile, 2021; p. 160. [Google Scholar]
- Min, B.R.; Parker, D.; Brauer, D.; Waldrip, H.; Lockard, C.; Hales, K.; Augyte, S. The role of seaweed as a potential dietary supplementation for enteric methane mitigation in ruminants: Challenges and opportunities. Anim. Nutr. 2021, 7, 1371–1387. [Google Scholar] [CrossRef] [PubMed]
- 12- Hidayah, N.; Noviandi, C.T.; Astuti, A.; Kustantinah, K. Chemical composition and in vitro rumen fermentation characteristics of various tropical seaweeds. J. Adv. Vet. Anim. Res. 2023, 10, 751. [Google Scholar]
- Guinguina, A.; Hayes, M.; Gröndahl, F.; Krizsan, S.J. Potential of the Red Macroalga Bonnemaisonia hamifera in Reducing Methane Emissions from Ruminants. Animals 2023, 13, 2925. [Google Scholar] [CrossRef]
- Lee-Rangel, H.A.; Roque-Jiménez, J.A.; Cifuentes-López, R.O.; Álvarez-Fuentes, G.; Cruz-Gómez, A.D.L.; Martínez-García, J.A.; Chay-Canul, A.J. Evaluation of three marine algae on degradability, in vitro gas production, and CH4 and CO2 emissions by ruminants. Fermentation 2020, 8, 511. [Google Scholar] [CrossRef]
- Hidayah, N.; Kustantinah, K.; Noviandi, C.T.; Astuti, A.; Hanim, C.; Suwignyo, B. Evaluation of rumen in vitro gas production and fermentation characteristics of four tropical seaweed species. Vet. Integr. Sci. 2023, 21, 229–238. [Google Scholar] [CrossRef]
- Zitouni, H.; Arhab, R.; Boudry, C.; Bousseboua, H.; Beckers, Y. Chemical and biological evaluation of the nutritive value of Algerian green seaweed Ulva lactuca using in vitro gas production technique fior ruminant animals. Int. J. Adv. Res. 2014, 2, 916–925. [Google Scholar]
- Burtin, P. Nutritional value of seaweeds. Electron. J. Environ. Agric. Food Chem. 2003, 2, 498–503. [Google Scholar]
- Roque, B.M.; Salwen, J.K.; Kinley, R.; Kebreab, E. Inclusion of Asparagopsis armata in lactating dairy cows’ diet reduces enteric methane emission by over 50 percent. J. Clean. Prod. 2019, 234, 132–138. [Google Scholar] [CrossRef]
- Brooke, C.G.; Roque, B.M.; Shaw, C.; Najafi, N.; Gonzalez, M.; Pfefferlen, A.; Hess, M. Methane reduction potential of two pacific coast macroalgae during in vitro ruminant fermentation. Front. Mar. Sci. 2020, 7, 561. [Google Scholar] [CrossRef]
- Nunes, H.P.; Maduro Dias, C.S.; Álvaro, N.V.; Borba, A.E. Evaluation of Two Species of Macroalgae from Azores Sea as Potential Reducers of Ruminal Methane Production: In Vitro Ruminal Assay. Animals 2020, 14, 967. [Google Scholar] [CrossRef]
- Machado, L.; Magnusson, M.; Paul, N.A.; Kinley, R.; de Nys, R.; Tomkins, N. Dose-response effects of Asparagopsis taxiformis and Oedogonium sp. on in vitro fermentation and methane production. J. Appl. Phycol. 2016, 28, 1443–1452. [Google Scholar] [CrossRef]
- Choi, Y.; Lee, S.J.; Kim, H.S.; Eom, J.S.; Jo, S.U.; Guan, L.L.; Lee, S.S. Red seaweed extracts reduce methane production by altering rumen fermentation and microbial composition in vitro. Front. Vet. Sci. 2022, 9, 985824. [Google Scholar] [CrossRef]
- Canul-Ku, L.A.; Sanginés-García, J.R.; Urquizo, E.A.; Canul-Solís, J.R.; Valdivieso-Pérez, I.A.; Vargas-Bello-Pérez, E.; Piñeiro-Vázquez, Á.T. Effect of pelagic Sargassum on in vitro dry matter and organic matter degradation, gas production, and protozoa population. Animals 2023, 13, 1858. [Google Scholar] [CrossRef]
- Theodorou, M.K.; Williams, B.A.; Dhanoa, M.S.; McAllan, A.B.; France, J. A simple gas production method using a pressure transducer to determine the fermentation kinetics of ruminant feeds. Anim. Feed Sci. Technol. 1994, 48, 185–197. [Google Scholar] [CrossRef]
- Krishnamoorthy, U.; Soller, H.; Steingass, H.; Menke, K.H. A comparative study on rumen fermentation of energy supplementsin vitro. J. Anim. Physiol. Anim. Nutr. 1991, 65, 28–35. [Google Scholar] [CrossRef]
- Blümmel, M.; Makkar, H.P.S.; Becker, K. In vitro gas production: A technique revisited. J. Anim. Physiol. Anim. Nutr. 1997, 77, 24–34. [Google Scholar] [CrossRef]
- Broderick, G.A.; Kang, J.H. Automated simultaneous determination of ammonia and total amino acids in ruminal fluid and in vitro media. J. Dairy Sci. 1980, 63, 64–75. [Google Scholar] [CrossRef]
- Menke, K.H. Steingass, Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Anim. Res. Dev. 1988, 28, 375–386. [Google Scholar]
- Wang, J.; Jin, W.; Hou, Y.; Niu, X.; Zhang, H.; Zhang, Q. Chemical composition and moisture-absorption/retention ability of polysaccharides extracted from five algae. Int. J. Biol. Macromol. 2013, 57, 26–29. [Google Scholar] [CrossRef]
- Association of Official Analytical Chemists. Official Methods of Analysis, 18th ed.; Official Methods of Analysis of AOAC International; Association of Official Analytical Chemists: Arington, VA, USA, 2015. [Google Scholar]
- Van Soest, P.V.; Robertson, J.B.; Lewis, B. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
Item | G. skottsbergi | M. pyriphera | L. flavicons | U. lactuca | Alfalfa Hay | SEM 1 | p-Value |
---|---|---|---|---|---|---|---|
OM, g/kg | 744.63 b | 561.97 e | 693.77 c | 641.92 d | 899.13 a | 0.638 | 0.0001 |
CP, g/kg | 86.00 e | 141.55 c | 111.86 d | 185.91 a | 154.50 b | 1.054 | 0.0001 |
EE, g/kg | 17.68 a | 3.00 d | 1.65 e | 14.34 b | 8.57 c | 0.188 | 0.0001 |
NDF, g/kg | 238.94 c | 177.87 c | 254.37 b | 207.79 c | 389.15 a | 6.876 | 0.0001 |
ADF, g/kg | 94.00 c | 106.34 b | 93.66 c | 96.00 c | 214.00 a | 1.156 | 0.0001 |
ADL, g/kg | 6.51 b | 6.28 b | 7.30 a | 6.06 b | 7.75 a | 0.091 | 0.0001 |
Item 1 | G. skottsbergi | M. pyriphera | L. flavicons | U. lactuca | Alfalfa Hay | SEM 2 | p-Value |
---|---|---|---|---|---|---|---|
b | 29.73 c | 162.82 a | 50.95 c | 102.33 abc | 119.35 ab | 16.519 | 0.0013 |
c | 0.023 c | 0.004 d | 0.036 b | 0.017 c | 0.043 a | 0.002 | 0.0001 |
Lag time | −0.617 cd | −1.821 d | 4.311 a | −0.098 c | 2.416 b | 0.329 | 0.0001 |
Mean gas production in time (mL gas/g DM) | |||||||
6 h | 4.44 c | 7.78 bc | 4.42 c | 10.92 b | 16.31 a | 0.976 | 0.0001 |
12 h | 6.82 d | 12.45 c | 10.87 cd | 20.74 b | 40.41 a | 1.206 | 0.0001 |
24 h | 11.55 d | 14.68 d | 25.13 c | 33.42 b | 73.66 a | 1.621 | 0.0001 |
48 h | 20.97 d | 32.99 cd | 41.18 c | 58.56 b | 102.28 a | 3.142 | 0.0001 |
96 h | 25.88 d | 59.14 c | 48.83 c | 82.51 b | 118.28 a | 4.567 | 0.0001 |
DMD96 | 68.49 a | 67.62 a | 41.60 b | 14.72 c | 44.64 b | 0.765 | 0.0001 |
ME | 7.89 e | 11.27 c | 10.28 d | 15.07 b | 16.02 a | 0.101 | 0.0001 |
MCP | 679.80 a | 669.81 a | 404.98 b | 132.48 c | 413.95 b | 7.226 | 0.0001 |
SCFA | 0.05 d | 0.06 d | 0.10 c | 0.14 b | 0.32 a | 0.007 | 0.0001 |
N-NH3 | 26.91 a | 21.05 b | 21.47 b | 30.67 a | 31.07 a | 2.293 | 0.0258 |
Item | G. skottsbergi | M. pyriphera | L. flavicons | U. lactuca | Alfalfa Hay | SEM 2 | p-Value |
---|---|---|---|---|---|---|---|
3 h | 0.33 b | 0.03 b | 0.25 b | 0.27 b | 5.26 a | 0.408 | 0.0001 |
6 h | 0.33 b | 0.03 b | 0.25 b | 0.27 b | 12.65 a | 1.092 | 0.0001 |
9 h | 1.99 b | 0.09 b | 0.85 b | 3.88 b | 20.46 a | 2.847 | 0.0024 |
12 h | 3.12 b | 0.15 b | 0.85 b | 4.49 b | 27.23 a | 3.357 | 0.0009 |
24 h | 4.53 c | 0.18 d | 0.85 d | 13.02 b | 64.41 a | 0.588 | 0.0001 |
ml CH4/g DMD 3 | 6.61 c | 0.26 c | 2.04 c | 90.18 b | 144.32 a | 4.787 | 0.0001 |
Time (h) | G. skottsbergi | M. pyriphera | L. flavicons | U. lactuca | Alfalfa Hay | SEM 1 | p-Value |
---|---|---|---|---|---|---|---|
0 h | 11.34 a | 9.40 ab | 9.12 ab | 7.15 bc | 6.26 c | 0.554 | 0.0006 |
3 h | 10.47 a | 8.09 ab | 8.01 ab | 6.18 bc | 4.994 c | 0.479 | 0.0001 |
6 h | 9.86 a | 7.48 b | 7.08 b | 5.30 bc | 3.90 c | 0.386 | 0.0001 |
9 h | 9.49 a | 6.99 b | 5.70 bc | 4.42 c | 2.77 d | 0.338 | 0.0001 |
12 h | 9.14 a | 6.63 b | 4.51 c | 3.70 c | 1.80 d | 0.284 | 0.0001 |
24 h | 8.15 a | 5.50 b | 2.44 c | 1.77 c | 0.77 c | 0.456 | 0.0001 |
36 h | 7.40 a | 4.63 b | 2.52 c | 1.80 c | 0.32 d | 0.193 | 0.0001 |
48 h | 6.61 a | 3.79 b | 1.75 c | 1.19 c | 0.02 d | 0.183 | 0.0001 |
Time (h) | G. skottsbergi | M. pyriphera | L. flavicons | U. lactuca | Alfalfa Hay | SEM 1 | p-Value |
---|---|---|---|---|---|---|---|
0 h | 100 | 100 | 100 | 100 | 100 | 0.000 | 0.9899 |
3 h | 92.50 a | 86.20 b | 87.83 b | 86.40 b | 79.80 c | 0.889 | 0.0001 |
6 h | 87.53 a | 79.70 ab | 77.60 b | 74.13 b | 62.30 c | 1.983 | 0.0001 |
9 h | 84.36 a | 74.70 a | 62.56 b | 61.86 b | 44.30 c | 2.147 | 0.0001 |
12 h | 81.30 a | 70.86 b | 49.50 c | 51.70 c | 28.93 d | 1.995 | 0.0001 |
24 h | 72.67 a | 58.93 a | 20.10 b | 34.13 b | 12.30 b | 4.960 | 0.0001 |
36 h | 65.96 a | 49.80 b | 27.73 c | 25.20 c | 5.10 d | 1.637 | 0.0001 |
48 h | 58.90 a | 40.70 b | 19.30 c | 16.63 c | 0.40 d | 1.366 | 0.0001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Robles-Jimenez, L.E.; Ghavipanje, N.; Ulloa, A.; Rivero, A.; Gallardo, P.; Gonzalez Ronquillo, M. Sub-Antarctic Macroalgae as Feed Ingredients for Sustainable Ruminant Production: In Vitro Total Gas and Methane Production. Methane 2024, 3, 456-465. https://doi.org/10.3390/methane3030026
Robles-Jimenez LE, Ghavipanje N, Ulloa A, Rivero A, Gallardo P, Gonzalez Ronquillo M. Sub-Antarctic Macroalgae as Feed Ingredients for Sustainable Ruminant Production: In Vitro Total Gas and Methane Production. Methane. 2024; 3(3):456-465. https://doi.org/10.3390/methane3030026
Chicago/Turabian StyleRobles-Jimenez, Lizbeth E., Navid Ghavipanje, Ashley Ulloa, Ali Rivero, Pablo Gallardo, and Manuel Gonzalez Ronquillo. 2024. "Sub-Antarctic Macroalgae as Feed Ingredients for Sustainable Ruminant Production: In Vitro Total Gas and Methane Production" Methane 3, no. 3: 456-465. https://doi.org/10.3390/methane3030026
APA StyleRobles-Jimenez, L. E., Ghavipanje, N., Ulloa, A., Rivero, A., Gallardo, P., & Gonzalez Ronquillo, M. (2024). Sub-Antarctic Macroalgae as Feed Ingredients for Sustainable Ruminant Production: In Vitro Total Gas and Methane Production. Methane, 3(3), 456-465. https://doi.org/10.3390/methane3030026