Sub-Antarctic Macroalgae as Feed Ingredients for Sustainable Ruminant Production: In Vitro Total Gas and Methane Production
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rauw, W.M.; Gómez Izquierdo, E.; Torres, O.; García Gil, M.; de Miguel Beascoechea, E.; Rey Benayas, J.M.; Gomez-Raya, L. Future farming: Protein production for livestock feed in the EU. Sustain. Earth Rev. 2023, 6, 3. [Google Scholar] [CrossRef]
- Pandey, D.; Mansouryar, M.; Novoa-Garrido, M.; Næss, G.; Kiron, V.; Hansen, H.; Khanal, P. Nutritional and Anti-Methanogenic Potentials of Macroalgae for Ruminants; Burleigh Dodds Science Publishing: Sawston, UK, 2021. [Google Scholar]
- Bačėninaitė, D.; Džermeikaitė, K.; Antanaitis, R. Global warming and dairy cattle: How to control and reduce methane emission. Animals 2022, 12, 2687. [Google Scholar] [CrossRef]
- Palangi, V.; Taghizadeh, A.; Abachi, S.; Lackner, M. Strategies to mitigate enteric methane emissions in ruminants: A review. Sustainability 2022, 14, 13229. [Google Scholar] [CrossRef]
- Giamouri, E.; Zisis, F.; Mitsiopoulou, C.; Christodoulou, C.; Pappas, A.C.; Simitzis, P.E.; Tsiplakou, E. Sustainable strategies for greenhouse gas emission reduction in small ruminants farming. Sustainability 2023, 15, 4118. [Google Scholar] [CrossRef]
- Shinkai, T.; Takizawa, S.; Fujimori, M.; Mitsumori, M. The role of rumen microbiota in enteric methane mitigation for sustainable ruminant production. Anim. Biosci. 2024, 37, 360. [Google Scholar] [CrossRef]
- United Nations (UN). Paris Agreement to the United Nations Framework Convention on Climate Change; Dec. 12, T.I.A.S. No. 16-1104; United Nations (UN): New York, NY, USA, 2015.
- Sofyan, A.; Irawan, A.; Herdian, H.; Harahap, M.A.; Sakti, A.A.; Suryani, A.E.; Jayanegara, A. Effects of various macroalgae species on methane production, rumen fermentation, and ruminant production: A meta-analysis from in vitro and in vivo experiments. Anim. Feed Sci. Technol. 2022, 294, 115503. [Google Scholar] [CrossRef]
- Abbott, D.W.; Aasen, I.M.; Beauchemin, K.A.; Grondahl, F.; Gruninger, R.; Hayes, M.; Xing, X. Seaweed and seaweed bioactives for mitigation of enteric methane: Challenges and opportunities. Animals 2020, 10, 2432. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Zhao, G. Decreasing ruminal methane production through enhancing the sulfate reduction pathway. Anim. Nutr. 2022, 9, 320–326. [Google Scholar] [CrossRef]
- Ahmed, E.; Suzuki, K.; Nishida, T. Micro-and macro-algae combination as a novel alternative ruminant feed with methane-mitigation potential. Animals 2023, 13, 796. [Google Scholar] [CrossRef] [PubMed]
- Rahikainen, M.; Samson, R.; Yang, B. Global Production of Macroalgae and Uses as Food, Dietary Supplements and Food Additives; Project Report, Growing Algae Sustainably in the Baltic Sea (GRASS), Interreg Baltic Sea Region, European Regional Development Fund; 2021; Available online: https://submariner-network.eu/wp-content/uploads/2024/01/Seaweed_usage_GRASS_MR_03092021.pdf (accessed on 22 August 2024).
- Wasson, D.E.; Stefenoni, H.; Cueva, S.F.; Lage, C.; Räisänen, S.E.; Melgar, A.; Hristov, A.N. Screening macroalgae for mitigation of enteric methane in vitro. Sci. Rep. 2023, 13, 9835. [Google Scholar] [CrossRef]
- McGurrin, A.; Maguire, J.; Tiwari, B.K.; Garcia-Vaquero, M. Anti-methanogenic potential of seaweeds and seaweed-derived compounds in ruminant feed: Current perspectives, risks and future prospects. J. Anim. Sci. Biotechnol. 2023, 14, 145. [Google Scholar] [CrossRef]
- McCauley, J.I.; Labeeuw, L.; Jaramillo-Madrid, A.C.; Nguyen, L.N.; Nghiem, L.D.; Chaves, A.V.; Ralph, P.J. Management of enteric methanogenesis in ruminants by algal-derived feed additives. Curr. Pollut. Rep. 2020, 6, 188–205. [Google Scholar] [CrossRef]
- Jofre, J.; Dubrasquet, H.; Ramírez, M.E.; Navarro, N.P.; Macaya, E.C. Subantartic Macroalgae Guide: Magallanes and Chilean Antarctica Region, 1st ed.; Thermo Fisher Scientific: Punta Arenas, Chile, 2021; p. 160. [Google Scholar]
- Min, B.R.; Parker, D.; Brauer, D.; Waldrip, H.; Lockard, C.; Hales, K.; Augyte, S. The role of seaweed as a potential dietary supplementation for enteric methane mitigation in ruminants: Challenges and opportunities. Anim. Nutr. 2021, 7, 1371–1387. [Google Scholar] [CrossRef] [PubMed]
- 12- Hidayah, N.; Noviandi, C.T.; Astuti, A.; Kustantinah, K. Chemical composition and in vitro rumen fermentation characteristics of various tropical seaweeds. J. Adv. Vet. Anim. Res. 2023, 10, 751. [Google Scholar]
- Guinguina, A.; Hayes, M.; Gröndahl, F.; Krizsan, S.J. Potential of the Red Macroalga Bonnemaisonia hamifera in Reducing Methane Emissions from Ruminants. Animals 2023, 13, 2925. [Google Scholar] [CrossRef]
- Lee-Rangel, H.A.; Roque-Jiménez, J.A.; Cifuentes-López, R.O.; Álvarez-Fuentes, G.; Cruz-Gómez, A.D.L.; Martínez-García, J.A.; Chay-Canul, A.J. Evaluation of three marine algae on degradability, in vitro gas production, and CH4 and CO2 emissions by ruminants. Fermentation 2020, 8, 511. [Google Scholar] [CrossRef]
- Hidayah, N.; Kustantinah, K.; Noviandi, C.T.; Astuti, A.; Hanim, C.; Suwignyo, B. Evaluation of rumen in vitro gas production and fermentation characteristics of four tropical seaweed species. Vet. Integr. Sci. 2023, 21, 229–238. [Google Scholar] [CrossRef]
- Zitouni, H.; Arhab, R.; Boudry, C.; Bousseboua, H.; Beckers, Y. Chemical and biological evaluation of the nutritive value of Algerian green seaweed Ulva lactuca using in vitro gas production technique fior ruminant animals. Int. J. Adv. Res. 2014, 2, 916–925. [Google Scholar]
- Burtin, P. Nutritional value of seaweeds. Electron. J. Environ. Agric. Food Chem. 2003, 2, 498–503. [Google Scholar]
- Roque, B.M.; Salwen, J.K.; Kinley, R.; Kebreab, E. Inclusion of Asparagopsis armata in lactating dairy cows’ diet reduces enteric methane emission by over 50 percent. J. Clean. Prod. 2019, 234, 132–138. [Google Scholar] [CrossRef]
- Brooke, C.G.; Roque, B.M.; Shaw, C.; Najafi, N.; Gonzalez, M.; Pfefferlen, A.; Hess, M. Methane reduction potential of two pacific coast macroalgae during in vitro ruminant fermentation. Front. Mar. Sci. 2020, 7, 561. [Google Scholar] [CrossRef]
- Nunes, H.P.; Maduro Dias, C.S.; Álvaro, N.V.; Borba, A.E. Evaluation of Two Species of Macroalgae from Azores Sea as Potential Reducers of Ruminal Methane Production: In Vitro Ruminal Assay. Animals 2020, 14, 967. [Google Scholar] [CrossRef]
- Machado, L.; Magnusson, M.; Paul, N.A.; Kinley, R.; de Nys, R.; Tomkins, N. Dose-response effects of Asparagopsis taxiformis and Oedogonium sp. on in vitro fermentation and methane production. J. Appl. Phycol. 2016, 28, 1443–1452. [Google Scholar] [CrossRef]
- Choi, Y.; Lee, S.J.; Kim, H.S.; Eom, J.S.; Jo, S.U.; Guan, L.L.; Lee, S.S. Red seaweed extracts reduce methane production by altering rumen fermentation and microbial composition in vitro. Front. Vet. Sci. 2022, 9, 985824. [Google Scholar] [CrossRef]
- Canul-Ku, L.A.; Sanginés-García, J.R.; Urquizo, E.A.; Canul-Solís, J.R.; Valdivieso-Pérez, I.A.; Vargas-Bello-Pérez, E.; Piñeiro-Vázquez, Á.T. Effect of pelagic Sargassum on in vitro dry matter and organic matter degradation, gas production, and protozoa population. Animals 2023, 13, 1858. [Google Scholar] [CrossRef]
- Theodorou, M.K.; Williams, B.A.; Dhanoa, M.S.; McAllan, A.B.; France, J. A simple gas production method using a pressure transducer to determine the fermentation kinetics of ruminant feeds. Anim. Feed Sci. Technol. 1994, 48, 185–197. [Google Scholar] [CrossRef]
- Krishnamoorthy, U.; Soller, H.; Steingass, H.; Menke, K.H. A comparative study on rumen fermentation of energy supplementsin vitro. J. Anim. Physiol. Anim. Nutr. 1991, 65, 28–35. [Google Scholar] [CrossRef]
- Blümmel, M.; Makkar, H.P.S.; Becker, K. In vitro gas production: A technique revisited. J. Anim. Physiol. Anim. Nutr. 1997, 77, 24–34. [Google Scholar] [CrossRef]
- Broderick, G.A.; Kang, J.H. Automated simultaneous determination of ammonia and total amino acids in ruminal fluid and in vitro media. J. Dairy Sci. 1980, 63, 64–75. [Google Scholar] [CrossRef]
- Menke, K.H. Steingass, Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Anim. Res. Dev. 1988, 28, 375–386. [Google Scholar]
- Wang, J.; Jin, W.; Hou, Y.; Niu, X.; Zhang, H.; Zhang, Q. Chemical composition and moisture-absorption/retention ability of polysaccharides extracted from five algae. Int. J. Biol. Macromol. 2013, 57, 26–29. [Google Scholar] [CrossRef]
- Association of Official Analytical Chemists. Official Methods of Analysis, 18th ed.; Official Methods of Analysis of AOAC International; Association of Official Analytical Chemists: Arington, VA, USA, 2015. [Google Scholar]
- Van Soest, P.V.; Robertson, J.B.; Lewis, B. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
Item | G. skottsbergi | M. pyriphera | L. flavicons | U. lactuca | Alfalfa Hay | SEM 1 | p-Value |
---|---|---|---|---|---|---|---|
OM, g/kg | 744.63 b | 561.97 e | 693.77 c | 641.92 d | 899.13 a | 0.638 | 0.0001 |
CP, g/kg | 86.00 e | 141.55 c | 111.86 d | 185.91 a | 154.50 b | 1.054 | 0.0001 |
EE, g/kg | 17.68 a | 3.00 d | 1.65 e | 14.34 b | 8.57 c | 0.188 | 0.0001 |
NDF, g/kg | 238.94 c | 177.87 c | 254.37 b | 207.79 c | 389.15 a | 6.876 | 0.0001 |
ADF, g/kg | 94.00 c | 106.34 b | 93.66 c | 96.00 c | 214.00 a | 1.156 | 0.0001 |
ADL, g/kg | 6.51 b | 6.28 b | 7.30 a | 6.06 b | 7.75 a | 0.091 | 0.0001 |
Item 1 | G. skottsbergi | M. pyriphera | L. flavicons | U. lactuca | Alfalfa Hay | SEM 2 | p-Value |
---|---|---|---|---|---|---|---|
b | 29.73 c | 162.82 a | 50.95 c | 102.33 abc | 119.35 ab | 16.519 | 0.0013 |
c | 0.023 c | 0.004 d | 0.036 b | 0.017 c | 0.043 a | 0.002 | 0.0001 |
Lag time | −0.617 cd | −1.821 d | 4.311 a | −0.098 c | 2.416 b | 0.329 | 0.0001 |
Mean gas production in time (mL gas/g DM) | |||||||
6 h | 4.44 c | 7.78 bc | 4.42 c | 10.92 b | 16.31 a | 0.976 | 0.0001 |
12 h | 6.82 d | 12.45 c | 10.87 cd | 20.74 b | 40.41 a | 1.206 | 0.0001 |
24 h | 11.55 d | 14.68 d | 25.13 c | 33.42 b | 73.66 a | 1.621 | 0.0001 |
48 h | 20.97 d | 32.99 cd | 41.18 c | 58.56 b | 102.28 a | 3.142 | 0.0001 |
96 h | 25.88 d | 59.14 c | 48.83 c | 82.51 b | 118.28 a | 4.567 | 0.0001 |
DMD96 | 68.49 a | 67.62 a | 41.60 b | 14.72 c | 44.64 b | 0.765 | 0.0001 |
ME | 7.89 e | 11.27 c | 10.28 d | 15.07 b | 16.02 a | 0.101 | 0.0001 |
MCP | 679.80 a | 669.81 a | 404.98 b | 132.48 c | 413.95 b | 7.226 | 0.0001 |
SCFA | 0.05 d | 0.06 d | 0.10 c | 0.14 b | 0.32 a | 0.007 | 0.0001 |
N-NH3 | 26.91 a | 21.05 b | 21.47 b | 30.67 a | 31.07 a | 2.293 | 0.0258 |
Item | G. skottsbergi | M. pyriphera | L. flavicons | U. lactuca | Alfalfa Hay | SEM 2 | p-Value |
---|---|---|---|---|---|---|---|
3 h | 0.33 b | 0.03 b | 0.25 b | 0.27 b | 5.26 a | 0.408 | 0.0001 |
6 h | 0.33 b | 0.03 b | 0.25 b | 0.27 b | 12.65 a | 1.092 | 0.0001 |
9 h | 1.99 b | 0.09 b | 0.85 b | 3.88 b | 20.46 a | 2.847 | 0.0024 |
12 h | 3.12 b | 0.15 b | 0.85 b | 4.49 b | 27.23 a | 3.357 | 0.0009 |
24 h | 4.53 c | 0.18 d | 0.85 d | 13.02 b | 64.41 a | 0.588 | 0.0001 |
ml CH4/g DMD 3 | 6.61 c | 0.26 c | 2.04 c | 90.18 b | 144.32 a | 4.787 | 0.0001 |
Time (h) | G. skottsbergi | M. pyriphera | L. flavicons | U. lactuca | Alfalfa Hay | SEM 1 | p-Value |
---|---|---|---|---|---|---|---|
0 h | 11.34 a | 9.40 ab | 9.12 ab | 7.15 bc | 6.26 c | 0.554 | 0.0006 |
3 h | 10.47 a | 8.09 ab | 8.01 ab | 6.18 bc | 4.994 c | 0.479 | 0.0001 |
6 h | 9.86 a | 7.48 b | 7.08 b | 5.30 bc | 3.90 c | 0.386 | 0.0001 |
9 h | 9.49 a | 6.99 b | 5.70 bc | 4.42 c | 2.77 d | 0.338 | 0.0001 |
12 h | 9.14 a | 6.63 b | 4.51 c | 3.70 c | 1.80 d | 0.284 | 0.0001 |
24 h | 8.15 a | 5.50 b | 2.44 c | 1.77 c | 0.77 c | 0.456 | 0.0001 |
36 h | 7.40 a | 4.63 b | 2.52 c | 1.80 c | 0.32 d | 0.193 | 0.0001 |
48 h | 6.61 a | 3.79 b | 1.75 c | 1.19 c | 0.02 d | 0.183 | 0.0001 |
Time (h) | G. skottsbergi | M. pyriphera | L. flavicons | U. lactuca | Alfalfa Hay | SEM 1 | p-Value |
---|---|---|---|---|---|---|---|
0 h | 100 | 100 | 100 | 100 | 100 | 0.000 | 0.9899 |
3 h | 92.50 a | 86.20 b | 87.83 b | 86.40 b | 79.80 c | 0.889 | 0.0001 |
6 h | 87.53 a | 79.70 ab | 77.60 b | 74.13 b | 62.30 c | 1.983 | 0.0001 |
9 h | 84.36 a | 74.70 a | 62.56 b | 61.86 b | 44.30 c | 2.147 | 0.0001 |
12 h | 81.30 a | 70.86 b | 49.50 c | 51.70 c | 28.93 d | 1.995 | 0.0001 |
24 h | 72.67 a | 58.93 a | 20.10 b | 34.13 b | 12.30 b | 4.960 | 0.0001 |
36 h | 65.96 a | 49.80 b | 27.73 c | 25.20 c | 5.10 d | 1.637 | 0.0001 |
48 h | 58.90 a | 40.70 b | 19.30 c | 16.63 c | 0.40 d | 1.366 | 0.0001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Robles-Jimenez, L.E.; Ghavipanje, N.; Ulloa, A.; Rivero, A.; Gallardo, P.; Gonzalez Ronquillo, M. Sub-Antarctic Macroalgae as Feed Ingredients for Sustainable Ruminant Production: In Vitro Total Gas and Methane Production. Methane 2024, 3, 456-465. https://doi.org/10.3390/methane3030026
Robles-Jimenez LE, Ghavipanje N, Ulloa A, Rivero A, Gallardo P, Gonzalez Ronquillo M. Sub-Antarctic Macroalgae as Feed Ingredients for Sustainable Ruminant Production: In Vitro Total Gas and Methane Production. Methane. 2024; 3(3):456-465. https://doi.org/10.3390/methane3030026
Chicago/Turabian StyleRobles-Jimenez, Lizbeth E., Navid Ghavipanje, Ashley Ulloa, Ali Rivero, Pablo Gallardo, and Manuel Gonzalez Ronquillo. 2024. "Sub-Antarctic Macroalgae as Feed Ingredients for Sustainable Ruminant Production: In Vitro Total Gas and Methane Production" Methane 3, no. 3: 456-465. https://doi.org/10.3390/methane3030026
APA StyleRobles-Jimenez, L. E., Ghavipanje, N., Ulloa, A., Rivero, A., Gallardo, P., & Gonzalez Ronquillo, M. (2024). Sub-Antarctic Macroalgae as Feed Ingredients for Sustainable Ruminant Production: In Vitro Total Gas and Methane Production. Methane, 3(3), 456-465. https://doi.org/10.3390/methane3030026