Inhibitory Potential of Essential Oils on Malassezia strains by Various Plants †
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Abbreviations
P. versicolor | Pityriasis versicolor |
EOs | Essential oils |
References
- Cabañes, F.J. Malassezia yeasts: How many species infect humans and animals? PLoS Pathog. 2014, 10, e1003892. [Google Scholar] [CrossRef] [Green Version]
- Saunders, C.W.; Scheynius, A.; Heitman, J. Malassezia fungi are specialized to live on skin and associated with dandruff, eczema, and other skin diseases. PLoS Pathog. 2012, 8, e1002701. [Google Scholar] [CrossRef] [PubMed]
- Angiolella, L.; Leone, C.; Rojas, F.; Mussin, J.; de los Angeles Sosa, M.; Giusiano, G. Biofilm adherence and hydrophobicity as virulence factors in Malassezia furfur. Med. Mycol. 2018, 51, 111–116. [Google Scholar] [CrossRef] [PubMed]
- Prohic, A.; Jovovic Sadikovic, T.; Krupalija-Fazlic, M.; Kuskunovic-Vlahovljak, S. Malassezia species in healthy skin and in dermatological conditions. Int. J. Dermatol. 2016, 55, 494–504. [Google Scholar] [CrossRef] [PubMed]
- Theelen, B.; Cafarchia, C.; Gaitanis, G.; Bassukas, I.D.; Boekhout, T.; Dawson, T.L., Jr. Malassezia ecology, pathophysiology, and treatment. Med. Mycol. 2018, 56, S10–S25. [Google Scholar] [CrossRef] [Green Version]
- Borda, L.J.; Wikramanayake, T.C. Seborrheic dermatitis and dandruff: A comprehensive review. J. Clin. Investig. Dermatol. 2015, 3. [Google Scholar] [CrossRef] [Green Version]
- Dessinioti, C.; Katsambas, A. Seborrheic dermatitis: Etiology, risk factors, and treatments: Facts and controversies. Clin. Dermatol. 2013, 31, 343–351. [Google Scholar] [CrossRef]
- Leong, C.; Buttafuoco, A.; Glatz, M.; Bosshard, P.P. Antifungal susceptibility testing of Malassezia spp. with an optimized colorimetric broth microdilution method. J. Clin. Microb. 2017, 55, 1883–1893. [Google Scholar] [CrossRef] [Green Version]
- Gupta, A.K.; Foley, K.A. Antifungal Treatment for Pityriasis versicolor. J. Fungi 2015, 1, 13–29. [Google Scholar] [CrossRef] [PubMed]
- Cafarchia, C.; Iatta, R.; Immediato, D.; Puttilli, M.R.; Otranto, D. Azole susceptibility of Malassezia pachydermatis and Malassezia furfur and tentative epidemiological cut-off values. Med. Mycol. 2015, 53, 743–748. [Google Scholar] [CrossRef] [Green Version]
- Odds, F.C.; Brown, A.J.P.; Gow, N.A.R. Antifungal agents: Mechanisms of action. Trends Microbiol. 2003, 11, 272–279. [Google Scholar] [CrossRef]
- Bilia, A.R.; Guccione, C.; Isacchi, B.; Righeschi, C.; Firenzuoli, F.; Bergonzi, M.C. Essential oils loaded in nanosystems: A developing strategy for a successful therapeutic approach. Evid.-Based Complent. Altern. Med. 2014, 2014, 651593. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baser, K.H.C.; Buchbauer, G. Handbook of Essential Oils: Science, Technology, and Applications; CRC Press: Boca Raton, FL, USA, 2015. [Google Scholar]
- Nazzaro, F.; Fratianni, F.; De Martino, L.; Coppola, R.; De Feo, V. Effect of essential oils on pathogenic bacteria. Pharmaceuticals 2013, 6, 1451–1474. [Google Scholar] [CrossRef] [PubMed]
- Andrade, B.F.M.T.; Barbosa, L.N.; Probst, I.S.; Júnior, A.F. Antimicrobial activity of essential oils. J. Essent. Oil Res. 2014, 26, 34–40. [Google Scholar] [CrossRef]
- Adorjan, B.; Buchbauer, G. Biological properties of essential oils: An updated review. Flavour Fragr. J. 2010, 25, 407–426. [Google Scholar] [CrossRef]
- Bakkali, F.; Averbeck, S.; Averbeck, D.; Idaomar, M. Biological effects of essential oils—A review. Food Chem. Toxicol. 2008, 46, 446–475. [Google Scholar] [CrossRef]
- Pooja, A.R.O.R.A.; Arun, N.; Maninder, K. Screening of plant essential oils for antifungal activity against Malassezia furfur. Int. J. Pharm. Pharm. Sci. 2013, 5, 37–39. [Google Scholar]
- Khosravi, A.R.; Shokri, H.; Fahimirad, S. Efficacy of medicinal essential oils against pathogenic Malassezia sp. isolates. J. Mycol. Med. 2016, 26, 28–34. [Google Scholar] [CrossRef]
- Shahi, S.K.; Shahi, M.P.; Prakash, D. Syzygium aromaticum: Potent antidandruff agent with thermo-tolerance, quick killing action and long shelf life. Indo Am. J. Pharm. Res. 2015, 5, 795–802. [Google Scholar]
- Pinto, E.; Gonçalves, M.J.; Cavaleiro, C.; Salgueiro, L. Antifungal Activity of Thapsia villosa essential oil against Candida, Cryptococcus, Malassezia, Aspergillus and Dermatophyte Species. Molecules 2017, 22, 1595. [Google Scholar] [CrossRef] [Green Version]
- Guetat, A.; Boulila, A.; Boussaid, M. Phytochemical profile and biological activities of Deverra tortuosa (Desf.) DC.: A desert aromatic shrub widespread in Northern Region of Saudi Arabia. Nat. Prod. Res. 2018, 1–6. [Google Scholar] [CrossRef]
- Barac, A.; Donadu, M.; Usai, D.; Spiric, V.T.; Mazzarello, V.; Zanetti, S.; Rubino, S. Antifungal activity of Myrtus communis against Malassezia sp. isolated from the skin of patients with P. versicolor. Infection 2018, 46, 253–257. [Google Scholar] [CrossRef] [PubMed]
- Santomauro, F.; Donato, R.; Sacco, C.; Pini, G.; Flamini, G.; Bilia, A.R. Vapour and liquid-Phase Artemisia annua essential oil activities against several cinical strains of Candida. Planta Med. 2016, 82, 1016–1020. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vinciguerra, V.; Rojas, F.; Tedesco, V.; Giusiano, G.; Angiolella, L. Chemical characterization and antifungal activity of Origanum vulgare, Thymus vulgaris essential oils and carvacrol against Malassezia furfur. Nat. Prod. Res. 2018, 33, 3273–3277. [Google Scholar] [CrossRef] [PubMed]
- Franz, C.M. Essential oil research: Past, present and future. Flavour Fragr. J. 2010, 25, 112–113. [Google Scholar] [CrossRef]
- Santomauro, F.; Donato, R.; Pini, G.; Sacco, C.; Ascrizzi, R.; Bilia, A.R. Liquid and vapor-phase activity of Artemisia annua essential oil against pathogenic Malassezia spp. Planta Med. 2018, 84, 160–167. [Google Scholar] [CrossRef]
Sl. No. | Source | Main Constituents | Malassezia species | MIC | Assay | Reference |
---|---|---|---|---|---|---|
1 | Cinnamomun zeylanicum Blume | cinnamaldehyde, eugenol | M. furfur | 32 µg/mL | Broth microdilution method | [18] |
2 | Ocimum kilimandscharicum Gürke | camphor, limonene, camphene | M. furfur | 128 µg/mL | ||
3 | Malaleuca leucadendrun L. | 1,8 cineole, p-cymene, linalool | M. furfur | 64 µg/mL | ||
4 | Malaleuca alternifolia (Maiden & Betche) Cheel | not specified | M. furfur | 32 µg/mL | ||
5 | Zataria multiflora Boiss. | thymol, carvacrol | M. furfur M. sympodialis M. slooffiae M. globosa M. obtusa M. nana M. restricta | 35 µg/mL 30 µg/mL 80 µg/mL 50 µg/mL 60 µg/mL 30 µg/mL 40 µg/mL | ||
6 | Thymus kotschyanus Boiss. | thymol, carvacrol | M. furfur M. sympodialis M. slooffiae M. globosa M. obtusa M. nana M. restricta | 60 µg/mL 60 µg/mL 80 µg/mL 80 µg/mL 80 µg/mL 30 µg/mL 110 µg/mL | [19] | |
7 | Mentha spicata L. | carvone, limonene | M. furfur M. sympodialis M. slooffiae M. globosa M. obtusa M. nana M. restricta | 125 µg/mL 100 µg/mL 100 µg/mL 250 µg/mL 85 µg/mL 65 µg/mL 85 µg/mL | ||
8 | Artemisia sieberi Besser | α thujone, β thujone | M. furfur M. sympodialis M. slooffiae M. globosa M. obtusa M. nana | 250 µg/mL 85 µg/mL 150 µg/mL 50 µg/mL 155 µg/mL 110 µg/mL | ||
9 | Salvia rosmarinus Schleid | α pinene, 1,8 cineole linalool | M. furfur M. slooffiae M. sympodialis M. obtuse M. globose M. nana M. restricta | 260 µg/mL 250 µg/mL 420 µg/mL 410 µg/mL 850 µg/mL 100 µg/mL 350 µg/mL | ||
10 | Syzygium aromaticum (L.) Merrill & Perry | eugenol and β caryophillene | M. furfur | 0.625 µL/mL | Broth microdilution method | [20] |
11 | Foeniculum vulgare Mill | not specified | M. furfur | 1.250 µL/mL | ||
12 | Trachyspermum ammi L. | not specified | M. furfur | 0.312 µL/mL | ||
13 | Thapsia villosa L. | limonene, methyleugenol | M. furfur | 2.5 µL/mL | [21] | |
14 | Deverra tortuosa subsp. arabica Chrtek, Osbornová & Kourková flowers | apiol | M. furfur | 5.00 µL/mL | [22] | |
15 | Deverra tortuosa subsp. arabica Chrtek, Osbornová & Kourková stem | apiol | M. furfur | 8.00 µL/mL | ||
16 | Myrtus communis L. | geranyl acetate, or 1,8 cineole | M. furfur M. sympodialis M. slooffiae M. globosa M. obtusa M. japonica M. restricta | 31.25 µL/mL 62.5 µL/mL 31.25 µL/mL 31.25 µL/mL 62.5 µL/mL 31.25 µL/mL 125.0 µL/mL | [23] | |
17 | Artemisia annua L. | camphor, 1,8 cineole artemisia ketone | M. furfur M. sympodialis M. slooffiae M. globosa | 1.3 µL/mL 1.1 µL/mL 0.52 µL/mL 0.392 µL/mL | [24] | |
18 | Origanum vulgare L. | thymol, α terpinene, α cymene | M. furfur | 780 µg/mL | [25] | |
19 | Thymus vulgaris L. | α cymene, thymol | M. furfur | 920 µg/mL |
Sl. No. | Essential Oils | Active Compounds | Malassezia species | Results | Assay Method | References |
---|---|---|---|---|---|---|
1 | Cinnamomun zeylanicum Blume | cinnamaldehyde, eugenol | M. furfur | 14 ± 0. 51 mm | Disk Diffusion method | [26] |
2 | Ocimum kilimandscharicum Gürke | champhor, limonene, camphene | M. furfur | 8 ± 0.057 mm | ||
3 | Eucalyptus globulus Labill. | cineol, p-cymene | M. furfur | 0 mm | ||
4 | Malaleuca leucadendrun L. | 1,8 cineole, p-cymene, linalool | M. furfur | 12 ± 0 mm | ||
5 | Malaleuca alternifolia (Maiden & Betche) Cheel | not specified | M. furfur | 22 ± 0.057 mm | ||
6 | Pongamia glabra Vent. | karanjin, pongapin, pongaglabrone | M. furfur | 0 mm | ||
7 | Lavandula stoechas L. | fenchone, camphor, | M. furfur | 46.7 ± 8.2 mm | [21] | |
1,8 cineole | M. globosa | 50 ± 0 mm | ||||
M. obtusa | 43.7 ± 12.5 mm | |||||
8 | Cuminum cyminum L. | α pinene, 1,8 cineole | M. furfur | 50 ± 0 mm | ||
linalool | M. globosa | 50 ± 0 mm | ||||
M. obtusa | 50 ± 0 mm | |||||
9 | Artemisia sieberi Besser | α thujone, camphor | M. furfur | 43.3 ± 14.1 mm | ||
β thujone | M. globosa | 35 ± 14.1mm | ||||
M. obtusa | 32.5 ± 11.9 mm | |||||
10 | Artemisia annua L. | Volatile emissions: α pinene, 1,8 cineole, camphor | M. furfur M. sympodialis | MIC—0.41 µL/cm3 MIC—0.34 µL/cm3 | Vapor Phase method | [27] |
M. slooffiae | MIC—0.44 µL/cm3 | |||||
M. globosa | MIC—0.1 µL/cm3‘ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Siva Sai, C.; Mathur, N. Inhibitory Potential of Essential Oils on Malassezia strains by Various Plants. Biol. Life Sci. Forum 2021, 4, 46. https://doi.org/10.3390/IECPS2020-08838
Siva Sai C, Mathur N. Inhibitory Potential of Essential Oils on Malassezia strains by Various Plants. Biology and Life Sciences Forum. 2021; 4(1):46. https://doi.org/10.3390/IECPS2020-08838
Chicago/Turabian StyleSiva Sai, Chandragiri, and Neha Mathur. 2021. "Inhibitory Potential of Essential Oils on Malassezia strains by Various Plants" Biology and Life Sciences Forum 4, no. 1: 46. https://doi.org/10.3390/IECPS2020-08838
APA StyleSiva Sai, C., & Mathur, N. (2021). Inhibitory Potential of Essential Oils on Malassezia strains by Various Plants. Biology and Life Sciences Forum, 4(1), 46. https://doi.org/10.3390/IECPS2020-08838