Can the Normalized Difference Vegetation Index Be Used for Yield Prediction in Solanum tuberosum L. Plants Biofortified with Calcium? †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Biofortification Workflow
2.2. Normalized Difference Vegetation Index (NDVI)
2.3. Calcium Content in Tubers
2.4. Yield
2.5. Statistical Analysis
3. Results
3.1. NDVI
3.2. Tubers’ Ca Content
3.3. Yield
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hunt, E.R.; Rondon, S.I. Detection of potato beetle damage using remote sensing from small unmanned aircraft systems. J. Appl. Remote Sens. 2017, 11, 026013. [Google Scholar] [CrossRef]
- Zaeen, A.A.; Sharma, L.; Jasim, A.; Bali, S.; Buzza, A.; Alyokhin, A. In-season potato yield prediction with active optical sensors. AGE 2020, 3, e20024. [Google Scholar] [CrossRef]
- Fernández, C.I.; Leblon, B.; Haddadi, A.; Wang, J.; Wang, K. Potato late blight detection at the leaf and canopy level using hyperspectral data. Can. J. Remote Sens. 2020, 46, 390–413. [Google Scholar] [CrossRef]
- Karnieli, A.; Agam, N.; Pinker, R.; Anderson, M.; Imhoff, M.; Gutman, G.; Panov, N.; Goldberg, A. Use of NDVI and land surface temperature for drought assessment: Merits and limitations. J. Clim. 2010, 23, 618–633. [Google Scholar] [CrossRef]
- Xue, J.; Su, B. Significant remote sensing vegetation indices: A review of developments and applications. J. Sens. 2017, 2017, 1353691. [Google Scholar] [CrossRef]
- Radoglou-Grammatikis, P.; Sarigiannidis, P.; Lagkas, T.; Moscholios, I. A compilation of UAV applications for precision agriculture. Comput. Netw. 2020, 172, 107148. [Google Scholar] [CrossRef]
- Liu, C.; Hu, Z.; Islam, A.T.; Kong, R.; Yu, L.; Wang, Y.; Chen, S.; Zhang, X. Hyperspectral characteristics and inversion model estimation of winter wheat under different elevated CO2 concentrations. Int. J. Remote Sens. 2021, 42, 1035–1053. [Google Scholar] [CrossRef]
- Alexandratos, N.; Bruinsma, J. World Agriculture Towards 2030/2050: The 2012 Revision. Available online: http://www.fao.org/fileadmin/templates/esa/Global_persepctives/world_ag_2030_50_2012_rev.pdf (accessed on 4 July 2022).
- Sylvester, G. E-Agriculture in Action: Drones for Agriculture; Food and Agriculture Organization of the United Nations and International Telecommunication Union: Geneva, Switzerland, 2018. [Google Scholar]
- Xiao, Q.; Bai, X.; He, Y. Rapid Screen of the Color and Water Content of Fresh-Cut Potato Tuber Slices Using Hyperspectral Imaging Coupled with Multivariate Analysis. Foods 2020, 9, 94. [Google Scholar] [CrossRef] [PubMed]
- Luís, I.C.; Lidon, F.C.; Pessoa, C.C.; Marques, A.C.; Coelho, A.R.F.; Simões, M.; Patanita, M.; Dôres, J.; Ramalho, J.C.; Silva, M.M.; et al. Zinc Enrichment in Two Contrasting Genotypes of Triticum aestivum L Grains: Interactions between Edaphic Conditions and Foliar Fertilizers. Plants 2021, 10, 204. [Google Scholar] [CrossRef] [PubMed]
- Shafi, U.; Mumtaz, R.; García-Nieto, J.; Hassan, S.A.; Zaidi, S.A.; Iqbal, N. Precision Agriculture Techniques and Practices: From Considerations to Applications. Sensors 2019, 19, 3796. [Google Scholar] [CrossRef] [PubMed]
- Loures, L.; Chamizo, A.; Ferreira, P.; Loures, A.; Castanho, R.; Panagopoulos, T. Assessing the Effectiveness of Precision Agriculture Management Systems in Mediterranean Small Farms. Sustainability 2020, 12, 3765. [Google Scholar] [CrossRef]
- Ma, T.; Hui, Y.; Zhang, L.; Su, B.; Wang, R. Foliar Application of Chelated Sugar Alcohol Calcium Fertilizer for Regulating the Growth and Quality of Wine Grapes. Int. J. Agric. Biol. Eng. 2022, 15, 153–158. [Google Scholar] [CrossRef]
- Liu, C.; Li, Y.; Huo, W.; Li, T.; Wei, Q.; Huang, M.; Geng, C.; Yan, D. Effect of Sorbitol Calcium Chelate on Yield and Calcium Nutrient Absorption of Peanut. Am. J. Biochem. Biotechnol. 2021, 17, 160–173. [Google Scholar] [CrossRef]
- Korkmaz, N.; Aşkın, M.A. Effects of Calcium and Boron Foliar Application on Pomegranate (Punica granatum L.) Fruit Quality, Yield, and Seasonal Changes of Leaf Mineral Nutrition. Acta Hortic. 2015, 1089, 413–422. [Google Scholar] [CrossRef]
- Asgharzade, A.; Valizade, G.A.; Babaeian, M. Effect of Calcium Chloride (CaCl2) on Some Quality Characteristics of Apple Fruits in Shirvan Region. Afr. J. Microbiol. Res. 2012, 6, 2000–2003. [Google Scholar] [CrossRef]
- Raese, J.T.; Drake, S.R. Calcium Sprays and Timing Affect Fruit Calcium Concentrations, Yield, Fruit Weight, and Cork Spot of ‘Anjou’ Pears. HortScience 1995, 30, 1037–1039. [Google Scholar] [CrossRef]
- Mohammed, S.R.; Eskov, I.D.; Zeitar, E.M. Effect of Chitosan and Calcium Chloride Application on Tuber Yield and Vegetative Parameters against Potato Gangrene under Field Conditions. Plant Arch. 2020, 20, 3149–3153. [Google Scholar]
- El-Hadidi, E.; El-Dissoky, R.; AbdElhafez, A. Foliar Calcium and Magnesium Application Effect on Potato Crop Grown in Clay Loam Soils. J. Soil Sci. Agric. Eng. 2017, 8, 1–8. [Google Scholar] [CrossRef]
- Seifu, Y.W.; Deneke, S. Effect of Calcium Chloride and Calcium Nitrate on Potato (Solanum tuberosum L.) Growth and Yield. J. Horticult. 2017, 4, 207–211. [Google Scholar]
Code | Treatment | Minimum NDVI | Maximum NDVI | Average NDVI |
---|---|---|---|---|
9 | Ctr | 0.17 | 0.88 | 0.65 ± 0.16 |
10 | 12 kg/ha CaCl2 | 0.13 | 0.85 | 0.50 ± 0.15 |
11 | 24 kg/ha CaCl2 | 0.11 | 0.82 | 0.40 ± 0.15 |
12 | 12 kg/ha Ca-EDTA | 0.12 | 0.83 | 0.44 ± 0.17 |
13 | 24 kg/ha Ca-EDTA | 0.18 | 0.85 | 0.54 ± 0.17 |
Treatment | Total Yield (Kg) |
---|---|
Ctr | 75.4 |
12 kg/ha CaCl2 | 81.5 |
24 kg/ha CaCl2 | 64.1 |
12 kg/ha Ca-EDTA | 28.9 |
24 kg/ha Ca-EDTA | 40.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Coelho, A.R.F.; Daccak, D.; Luís, I.C.; Marques, A.C.; Pessoa, C.C.; Brito, M.; Kullberg, J.; Simões, M.; Silva, M.M.; Pessoa, M.F.; et al. Can the Normalized Difference Vegetation Index Be Used for Yield Prediction in Solanum tuberosum L. Plants Biofortified with Calcium? Biol. Life Sci. Forum 2023, 27, 13. https://doi.org/10.3390/IECAG2023-15757
Coelho ARF, Daccak D, Luís IC, Marques AC, Pessoa CC, Brito M, Kullberg J, Simões M, Silva MM, Pessoa MF, et al. Can the Normalized Difference Vegetation Index Be Used for Yield Prediction in Solanum tuberosum L. Plants Biofortified with Calcium? Biology and Life Sciences Forum. 2023; 27(1):13. https://doi.org/10.3390/IECAG2023-15757
Chicago/Turabian StyleCoelho, Ana Rita F., Diana Daccak, Inês Carmo Luís, Ana Coelho Marques, Cláudia Campos Pessoa, Maria Brito, José Kullberg, Manuela Simões, Maria Manuela Silva, Maria F. Pessoa, and et al. 2023. "Can the Normalized Difference Vegetation Index Be Used for Yield Prediction in Solanum tuberosum L. Plants Biofortified with Calcium?" Biology and Life Sciences Forum 27, no. 1: 13. https://doi.org/10.3390/IECAG2023-15757
APA StyleCoelho, A. R. F., Daccak, D., Luís, I. C., Marques, A. C., Pessoa, C. C., Brito, M., Kullberg, J., Simões, M., Silva, M. M., Pessoa, M. F., Reboredo, F. H., Legoinha, P., Ramalho, J. C., Campos, P. S., Pais, I. P., Semedo, J. N., & Lidon, F. C. (2023). Can the Normalized Difference Vegetation Index Be Used for Yield Prediction in Solanum tuberosum L. Plants Biofortified with Calcium? Biology and Life Sciences Forum, 27(1), 13. https://doi.org/10.3390/IECAG2023-15757