Accuracy Verification of the Convergent Photogrammetry Method for Levelling Staff Calibration
Abstract
1. Introduction
2. Materials and Methods
2.1. Convergent Photogrammetry
2.2. Measured Object
2.3. Coded Targets
2.4. Illumination
2.5. Camera and Lens Selection, Imagery
2.6. Image Processing
2.6.1. Photomodeler
- Creating a project with automatic measurement of RAD coded targets, uploading images, and starting the automatic detection and measurement of RAD targets in the images (Edge Filter Sigma 2.0 pix; Edge Strength High Threshold 0.4; Edge Strength Low Threshold 0.2; Fit Error 0.1 pix);
- Determination of the exterior and interior orientation parameters of the camera based on bundle block adjustment using the least squares method;
- Exclusion of outlier measured points (Ignore a Border around the Image 8%) and optimization of the interior and exterior camera orientation parameters;
- Insertion of a constant scale between two selected RAD coded targets (numbers 49 and 72);
- Measurement of check lengths.
- Self-calibration, in which the interior camera parameters are estimated by bundle block adjustment and optimized separately for each image;
- Field calibration (full-field), where the interior camera parameters are also estimated by bundle block adjustment but are optimized into a single set of camera parameters that is applied to all images (referred to as full-field calibration in Photomodeler).
2.6.2. Agisoft Metashape
- Creating a project, loading images and automatic detection of 12-bit coded targets;
- Determination of the exterior and interior orientation parameters of the camera based on the SfM (Structure from Motion) algorithm, using bundle block adjustment with the least squares method, supplemented by automatically detected natural tie points (Precision: Highest; Key Points: 100,000; Tie Points: 0—all);
- Automatic detection and measurement of the centers of RAD targets as non-coded circular targets;
- Filtering outlier measured tie points and optimization of the interior and exterior camera orientation parameters (Image Count: 2; Reprojection Error: 0.05; Reprojection Uncertainty: 10.0; Projection Accuracy: 10.0);
- Insertion of a constant scale between two selected RAD coded targets (numbers 49 and 72);
- Measurement of check lengths.
- Self-calibration, where the sparse point cloud was filtered based on a reprojection error threshold, followed by optimization of the camera calibration results with the interior camera parameters estimated separately for each image;
- Field calibration (full-field calibration), in which the sparse point cloud was also filtered based on a reprojection error threshold, followed by optimization of the camera calibration results with a single set of interior camera parameters estimated for the entire image block.
3. Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| RAD | Ringed automatically detected |
| GSD | Ground sampling distance |
| SfM | Structure from Motion |
| RMS | Root mean square |
| SD | Standard deviation |
References
- Baričević, S.; Staroveški, T.; Barković, Đ.; Zrinjski, M. Measuring Uncertainty Analysis of the New Leveling Staff Calibration System. Sensors 2023, 23, 6358. [Google Scholar] [CrossRef] [PubMed]
- Kuchmister, J.; Gołuch, P.; Ćmielewski, K.; Rzepka, J.; Budzyń, G. A Functional-Precision Analysis of the Vertical Comparator for the Calibration of Geodetic Levelling Systems. Measurement 2020, 163, 107951. [Google Scholar] [CrossRef]
- Kajánek, P.; Kopáčik, A.; Kyrinovič, P.; Erdélyi, J.; Marčiš, M.; Fraštia, M. Metrology of Short-Length Measurers—Development of a Comparator for the Calibration of Measurers Based on Image Processing and Interferometric Measurements. Sensors 2024, 24, 1573. [Google Scholar] [CrossRef] [PubMed]
- Vyskočil, Z.; Lukeš, Z. Horizontal Comparator for the System Calibration of Digital Levels – Realization at the Faculty of Civil Engineering, CTU Prague and in the Laboratory of the Department of Survey and Mapping Malaysia (JUPEM) in Kuala Lumpur. Geoinform. FCE CTU 2015, 14, 55–61. [Google Scholar] [CrossRef]
- Giniotis, V.; Petroškevičius, P.; Skeivalas, J. Application of Photogrammetric Method for Height Measurement Instrumentation. Mechanika 2008, 14, 69–73. [Google Scholar]
- Fraštia, M. Vybrané Aplikácie Fotogrametrie v Oblasti Merania Posunov; Slovenská Technická Univerzita: Bratislava, Slovakia, 2017. [Google Scholar]
- Maas, H.; Hampel, A. Photogrammetric Techniques in Civil Engineering, Material Testing and Structure Monitoring. Photogramm. Eng. Remote Sens. 2006, 72, 39–45. [Google Scholar] [CrossRef]
- Luhmann, T. Close Range Photogrammetry for Industrial Applications. ISPRS J. Photogramm. Remote Sens. 2010, 65, 558–569. [Google Scholar] [CrossRef]
- Whiteman, T.; Lichti, D.D.; Chandler, I. Measurement of Deflections in Concrete Beams by Close-Range Digital Photogrammetry. J. Surv. Eng. 2002, 9–12. [Google Scholar]
- Pavelka, K.; Zahradník, D.; Sedina, J.; Pavelka, K. New Measurement Methods for Structure Deformation and Objects Exact Dimension Determination. In IOP Conference Series: Earth and Environmental Science; IOP Publishing Ltd.: Bristol, UK, 2021; Volume 906, p. 012060. [Google Scholar]
- Albert, J.; Maas, H.-G.; Schade, A.; Schwarz, W. Pilot Studies on Photogrammetric Bridge Deformation Measurement. Photogramm. Rec. 2002, 21, 24. [Google Scholar]
- Bösemann, W. Industrial Photogrammetry: Challenges and Opportunities. Photogramm. Rec. 2011, 8085, 188–197. [Google Scholar]
- Niemeier, W.; Riedel, B.; Fraser, C.; Neuss, H.; Stratmann, R.; Ziem, E. New Digital Crack Monitoring System for Measuring and Documentation of Width of Cracks in Concrete Structures. J. Civ. Struct. Health Monit 2008, 12, 1–9. [Google Scholar]
- Luhmann, T.; Robson, S.; Kyle, S.; Boehm, J. Close-Range Photogrammetry and 3D Imaging, 2nd ed.; Whittles Publishing: Dunbeath, UK, 2013. [Google Scholar]
- Fischer, T.; Fischer, W. Manufacturing of High Precision Leveling Rods. In The Importance of Heights, Proceedings of the Symposium, Gävle, Sweden, 15–17 March 1999; Lilje, M., Ed.; FIG: Gävle, Sweden, 1999; pp. 223–228. [Google Scholar]
- Brown, D.C. Decentering Distortion of Lenses. Photogramm. Eng. 1966, 32, 444–462. [Google Scholar]
- Luhmann, T.; Fraser, C.; Maas, H.G. Sensor Modelling and Camera Calibration for Close-Range Photogrammetry. ISPRS J. Photogramm. Remote Sens. 2016, 115, 37–46. [Google Scholar] [CrossRef]
- Fraser, C.S. Automatic Camera Calibration in Close Range Photogrammetry. Photogramm. Rec. 2013, 79, 381–388. [Google Scholar] [CrossRef]
- Fraser, C.S. Innovations in Automation for Vision Metrology Systems. Photogramm. Rec. 1997, 15, 901–911. [Google Scholar] [CrossRef]
- Shortis, M.R.; Seager, J.W. A Practical Target Recognition System for Close Range Photogrammetry. Photogramm. Rec. 2014, 29, 337–355. [Google Scholar] [CrossRef]
- Bobkowska, K.; Burdziakowski, P.; Szulwic, J.; Zielinska-Dabkowska, K.M. Seven Different Lighting Conditions in Photogrammetric Studies of a 3D Urban Mock-Up. Energies 2021, 14, 8002. [Google Scholar] [CrossRef]
- Agisoft. Metashape 2.1.0; Agisoft LLC: St. Petersburg, Russia, 2023. [Google Scholar]
- Photomodeler. Premium 2020.1.1; Photomodeler Inc.: Vancouver, BC, Canada, 2020. [Google Scholar]
- Photomodeler. User Manual; Photomodeler Inc.: Vancouver, BC, Canada, 2020. [Google Scholar]
- Agisoft. Metashape User Manual—Standard Edition, Version 2.1; Agisoft LLC: St. Petersburg, Russia, 2024. [Google Scholar]






| Construction Characteristic | Type | Advantages | Disadvantages |
|---|---|---|---|
| Object of comparation | Levelling staff | Smaller uncertainty of comparation | No systematic influence of level on comparation results |
| Levelling set | Systematic influence of level in comparation results | Bigger uncertainty of comparation | |
| Levelling staff position | Horizontal | Simpler comparator construction | Staff is not calibrated in a field working position |
| Vertical | Staff is calibrated in a field working position | More complex and expensive construction | |
| Levelling staff reading | Analog (optical microscope or optical level) | More accurate detection of damaged graduation line edges | Susceptible to operator’s subjectivity Longevity of comparator measurement |
| Digital (camera or digital level) | Operator’s subjectivity eliminated Speed | Possible data redundancy | |
| Distance (movement) measurement device | Linear encoder | Simplicity Relatively low price | Bigger uncertainty |
| Laser interferometer | Small uncertainty | Working complexity Subjected to atmospheric conditions | |
| Moving part | Levelling staff | Fixed reading device (optical axis always with fixed orientation) | Comparator must be at least twice as long as the levelling staff |
| Reading device | Smaller construction of the comparator | Possible movements of regain device axis |
| Lens | Focal Length | Aperture | ISO | Shutter Speed | Camera Used | Count of Image Sets | GSD [mm] | |
|---|---|---|---|---|---|---|---|---|
| MIN | MAX | |||||||
| Nikkor 35 mm G | 35 mm | f/16 | 100 | 1/3 s | Nikon D850 | 3 | 0.100 | 0.125 |
| Nikkor 20 mm D | 20 mm | f/22 | 100 | 1/2 s | Nikon D850 | 3 | 0.100 | 0.131 |
| Nikkor 20 mm G | 20 mm | f/16 | 100 | 1/3 s | Nikon D850 | 3 | 0.100 | 0.131 |
| Lens | Image Coverage [%] | Number of Images per Point | Point Angles [deg] | ||||||
|---|---|---|---|---|---|---|---|---|---|
| MIN | AVG | MAX | MIN | AVG | MAX | MIN | AVG | MAX | |
| Nikkor 35 mm G | 31.6 | 56.9 | 69.7 | 12 | 26 | 36 | 37.8 | 54.7 | 71.5 |
| Nikkor 20 mm D | 33.6 | 57.4 | 64.3 | 13 | 26 | 37 | 36.5 | 70.3 | 89.8 |
| Nikkor 20 mm G | 38.2 | 61.4 | 71.8 | 10 | 24 | 34 | 36.4 | 68.9 | 89.1 |
| Photomodeler Premium 2020.1.1 | |||||||||
|---|---|---|---|---|---|---|---|---|---|
| Camera Calibration | Lens | Parameter | Compared Lengths [mm] | Max. Residual [pix] | RMS Residual [pix] | ||||
| 200–201 | 201–202 | 202–203 | 203–204 | 200–204 | |||||
| Self-calibration with filter threshold | Nikkor 35 mm G | MEAN | 598.709 | 549.632 | 549.283 | 500.759 | 2198.363 | 0.32 | 0.09 |
| SD | 0.004 | 0.001 | 0.002 | 0.004 | 0.000 | ||||
| Nikkor 20 mm D | MEAN | 598.745 | 549.593 | 549.241 | 500.776 | 2198.326 | 1.01 | 0.24 | |
| SD | 0.024 | 0.003 | 0.009 | 0.016 | 0.002 | ||||
| Nikkor 20 mm G | MEAN | 598.722 | 549.590 | 549.251 | 500.793 | 2198.329 | 0.53 | 0.16 | |
| SD | 0.004 | 0.006 | 0.003 | 0.004 | 0.002 | ||||
| Full-field calibration with filter threshold | Nikkor 35 mm G | MEAN | 598.724 | 549.625 | 549.273 | 500.757 | 2198.359 | 0.32 | 0.09 |
| SD | 0.005 | 0.001 | 0.003 | 0.002 | 0.001 | ||||
| Nikkor 20 mm D | MEAN | 598.750 | 549.594 | 549.247 | 500.773 | 2198.335 | 1.03 | 0.24 | |
| SD | 0.012 | 0.012 | 0.002 | 0.017 | 0.007 | ||||
| Nikkor 20 mm G | MEAN | 598.726 | 549.599 | 549.258 | 500.782 | 2198.339 | 0.55 | 0.16 | |
| SD | 0.006 | 0.002 | 0.006 | 0.009 | 0.004 | ||||
| Agisoft Metashape Professional 2.1.0 | |||||||||
|---|---|---|---|---|---|---|---|---|---|
| Camera Calibration | Lens | Parameter | Compared Lengths [mm] | Max. Residual [pix] | RMS Residual [pix] | ||||
| 200–201 | 201–202 | 202–203 | 203–204 | 200–204 | |||||
| Self-calibration with filtered tie points | Nikkor 35 mm G | MEAN | 598.739 | 549.632 | 549.287 | 500.750 | 2198.387 | 0.63 | 0.16 |
| SD | 0.001 | 0.002 | 0.002 | 0.002 | 0.002 | ||||
| Nikkor 20 mm D | MEAN | 598.805 | 549.565 | 549.241 | 500.779 | 2198.349 | 2.45 | 0.36 | |
| SD | 0.046 | 0.050 | 0.044 | 0.018 | 0.045 | ||||
| Nikkor 20 mm G | MEAN | 598.749 | 549.545 | 549.215 | 500.823 | 2198.296 | 1.73 | 0.33 | |
| SD | 0.004 | 0.014 | 0.010 | 0.015 | 0.013 | ||||
| Full-field calibration with filtered tie points | Nikkor 35 mm G | MEAN | 598.756 | 549.623 | 549.273 | 500.748 | 2198.379 | 0.62 | 0.16 |
| SD | 0.004 | 0.003 | 0.001 | 0.002 | 0.001 | ||||
| Nikkor 20 mm D | MEAN | 598.825 | 549.571 | 549.233 | 500.744 | 2198.342 | 1.65 | 0.27 | |
| SD | 0.025 | 0.007 | 0.008 | 0.015 | 0.008 | ||||
| Nikkor 20 mm G | MEAN | 598.777 | 549.596 | 549.238 | 500.751 | 2198.335 | 1.08 | 0.18 | |
| SD | 0.002 | 0.001 | 0.004 | 0.006 | 0.007 | ||||
| Photomodeler Premium 2020.1.1 | ||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Camera Calibration | Lens | Standard Deviation [μm] | ||||||||||||||
| 200 | 201 | 202 | 203 | 204 | ||||||||||||
| X | Y | Z | X | Y | Z | X | Y | Z | X | Y | Z | X | Y | Z | ||
| Self-calibration with filter threshold | Nikkor 35 mm G | 6 | 3 | 9 | 2 | 2 | 6 | 3 | 2 | 7 | 2 | 2 | 6 | 6 | 3 | 9 |
| Nikkor 20 mm D | 16 | 7 | 18 | 6 | 4 | 13 | 7 | 5 | 14 | 5 | 4 | 13 | 15 | 7 | 17 | |
| Nikkor 20 mm G | 11 | 5 | 15 | 4 | 3 | 11 | 5 | 4 | 12 | 4 | 3 | 11 | 11 | 5 | 14 | |
| Full-field calibration with filter threshold | Nikkor 35 mm G | 6 | 3 | 20 | 3 | 2 | 7 | 2 | 2 | 13 | 3 | 2 | 5 | 5 | 3 | 20 |
| Nikkor 20 mm D | 13 | 7 | 36 | 7 | 4 | 13 | 7 | 4 | 22 | 7 | 4 | 9 | 12 | 7 | 34 | |
| Nikkor 20 mm G | 10 | 5 | 29 | 5 | 3 | 11 | 5 | 3 | 19 | 5 | 2 | 7 | 10 | 5 | 29 | |
| Agisoft Metashape Professional 2.1.0 | ||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Camera Calibration | Lens | Standard Deviation [μm] | ||||||||||||||
| 200 | 201 | 202 | 203 | 204 | ||||||||||||
| X | Y | Z | X | Y | Z | X | Y | Z | X | Y | Z | X | Y | Z | ||
| Self-calibration with filtered tie points | Nikkor 35 mm G | 17 | 28 | 57 | 17 | 29 | 55 | 17 | 25 | 52 | 17 | 26 | 52 | 18 | 27 | 53 |
| Nikkor 20 mm D | 31 | 45 | 84 | 32 | 38 | 73 | 32 | 38 | 74 | 33 | 37 | 70 | 29 | 38 | 85 | |
| Nikkor 20 mm G | 30 | 44 | 76 | 30 | 35 | 68 | 31 | 34 | 62 | 29 | 32 | 66 | 31 | 37 | 78 | |
| Full-field calibration with filtered tie points | Nikkor 35 mm G | 7 | 13 | 65 | 6 | 10 | 42 | 5 | 7 | 29 | 5 | 5 | 23 | 5 | 6 | 23 |
| Nikkor 20 mm D | 26 | 42 | 150 | 26 | 34 | 94 | 26 | 28 | 55 | 26 | 24 | 25 | 27 | 24 | 26 | |
| Nikkor 20 mm G | 14 | 18 | 93 | 14 | 15 | 58 | 14 | 13 | 33 | 14 | 13 | 24 | 15 | 13 | 25 | |
| Camera Calibration | Lens | Number of Image Set | Photomodeler Premium 2020.1.1 | Agisoft Metashape Pofessional 2.1.0 | ||||
|---|---|---|---|---|---|---|---|---|
| Focal Length [mm] | Principal Point [mm] | Focal Length [mm] | Principal Point [mm] | |||||
| X | Y | X | Y | |||||
| Self-calibration with filtered tie points | Nikkor 35 mm G | 1 | 34.9780–35.0048 | 17.9992–18.0188 | 11.9172–11.9343 | 34.9886–35.0153 | 17.9972–18.0185 | 11.9122–11.9308 |
| 2 | 34.9725–34.9910 | 18.0078–18.0208 | 11.9176–11.9366 | 34.9782–34.9957 | 18.0076–34.9957 | 11.9187–11.9321 | ||
| 3 | 34.9749–35.0086 | 18.0075–18.0215 | 11.9156–11.9354 | 34.9850–35.0035 | 18.0031–18.0194 | 11.9078–11.9316 | ||
| Nikkor 20 mm D | 1 | 20.1471–20.1674 | 18.0227–18.0408 | 11.9783–12.0061 | 20.1118–20.1420 | 18.0060–18.0464 | 11.9872–12.0520 | |
| 2 | 20.1600–20.1795 | 18.0241–18.0494 | 11.9787–12.0106 | 20.0997–20.1422 | 18.0091–18.0381 | 11.9884–12.0457 | ||
| 3 | 19.9087–19.9366 | 17.9985–18.0301 | 11.9490–11.9917 | 19.8736–19.9097 | 17.9970–18.0406 | 11.9560–12.0202 | ||
| Nikkor 20 mm G | 1 | 20.7033–20.7159 | 17.9895–18.0050 | 11.9228–11.9494 | 20.6994–20.7242 | 17.9979–18.0320 | 11.9232–11.9756 | |
| 2 | 20.7417–20.7592 | 17.9862–18.0065 | 11.9259–11.9525 | 20.7572–20.7796 | 17.9961–18.0353 | 11.9224–11.9788 | ||
| 3 | 20.7506–20.7666 | 17.9888–18.0030 | 11.9213–11.9480 | 20.7414–20.7698 | 17.9949–18.0301 | 11.9209–11.9843 | ||
| Full-field calibration with filtered tie points | Nikkor 35 mm G | 1 | 34.9905 | 18.0085 | 11.9286 | 34.9937 | 18.0066 | 11.9278 |
| 2 | 34.9756 | 18.0132 | 11.9323 | 34.9800 | 18.0117 | 11.9301 | ||
| 3 | 34.9881 | 18.0156 | 11.9292 | 34.9875 | 18.0134 | 11.9292 | ||
| Nikkor 20 mm D | 1 | 20.1897 | 18.0294 | 11.9826 | 20.2253 | 18.0237 | 11.9895 | |
| 2 | 20.2012 | 18.0316 | 11.9830 | 20.2031 | 18.0298 | 11.9849 | ||
| 3 | 19.9576 | 18.0059 | 11.9588 | 20.0253 | 17.9984 | 11.9691 | ||
| Nikkor 20 mm G | 1 | 20.7355 | 17.9935 | 11.9247 | 20.7676 | 18.0066 | 11.9295 | |
| 2 | 20.7834 | 17.9942 | 11.9258 | 20.8198 | 18.0067 | 11.9284 | ||
| 3 | 20.7897 | 17.9931 | 11.9240 | 20.8268 | 18.0043 | 11.9263 | ||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Benko, O.; Fraštia, M. Accuracy Verification of the Convergent Photogrammetry Method for Levelling Staff Calibration. Metrology 2025, 5, 77. https://doi.org/10.3390/metrology5040077
Benko O, Fraštia M. Accuracy Verification of the Convergent Photogrammetry Method for Levelling Staff Calibration. Metrology. 2025; 5(4):77. https://doi.org/10.3390/metrology5040077
Chicago/Turabian StyleBenko, Ondrej, and Marek Fraštia. 2025. "Accuracy Verification of the Convergent Photogrammetry Method for Levelling Staff Calibration" Metrology 5, no. 4: 77. https://doi.org/10.3390/metrology5040077
APA StyleBenko, O., & Fraštia, M. (2025). Accuracy Verification of the Convergent Photogrammetry Method for Levelling Staff Calibration. Metrology, 5(4), 77. https://doi.org/10.3390/metrology5040077

