NURR1 Is Differentially Expressed in Breast Cancer According to Patient Racial Identity and Tumor Subtype
Abstract
:Simple Summary
Abstract
1. Introduction
2. Methods
2.1. Kaplan–Meier Survival Curves
2.2. Analysis of Cancer Subtypes in Different Racial Groups
2.3. ROC Plotter Predictive Biomarker
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Society, A.C. Cancer Facts & Figures 2021; American Cancer Society: Atlanta, GA, USA, 2021. [Google Scholar]
- Society, A.C. Breast Cancer Facts & Figure 2019 and Figure 2020; American Cancer Society, Inc.: Atlanta, GA, USA, 2019. [Google Scholar]
- Moormeier, J. Breast cancer in black women. Ann. Intern. Med. 1996, 124, 897–905. [Google Scholar] [CrossRef]
- Ward, E.; Jemal, A.; Cokkinides, V.; Singh, G.K.; Cardinez, C.; Ghafoor, A.; Thun, M. Cancer disparities by race/ethnicity and socioeconomic status. CA Cancer J. Clin. 2004, 54, 78–93. [Google Scholar] [CrossRef] [Green Version]
- Yedjou, C.G.; Sims, J.N.; Miele, L.; Noubissi, F.; Lowe, L.; Fonseca, D.D.; Alo, R.A.; Payton, M.; Tchounwou, P.B. Health and Racial Disparity in Breast Cancer. Adv. Exp. Med. Biol. 2019, 1152, 31–49. [Google Scholar] [CrossRef]
- Tao, L.; Gomez, S.L.; Keegan, T.H.M.; Kurian, A.W.; Clarke, C.A. Breast Cancer Mortality in African-American and Non-Hispanic White Women by Molecular Subtype and Stage at Diagnosis: A Population-Based Study. Cancer Epidemiol. Biomark. Prev. 2015, 24, 1039. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, H.; Lu, Y.; Malone, K.E.; Marchbanks, P.A.; Deapen, D.M.; Spirtas, R.; Burkman, R.T.; Strom, B.L.; McDonald, J.A.; Folger, S.G.; et al. Mortality risk of black women and white women with invasive breast cancer by hormone receptors, HER2, and p53 status. BMC Cancer 2013, 13, 225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoskins, K.; Danciu, O.C.; Gadi, V.K.; Simons, Y.; Blumencranz, L.E.; Kling, H.; Uygun, S.; Crozier, J.A.; Habibi, M.; Sharma, D.; et al. Disparities within luminal breast cancer: Clinical and molecular features of African American and non-Hispanic white patients. J. Clin. Oncol. 2021, 39, 1009. [Google Scholar] [CrossRef]
- Kelly, C.M.; Bernard, P.S.; Krishnamurthy, S.; Wang, B.; Ebbert, M.T.W.; Bastien, R.R.L.; Boucher, K.M.; Young, E.; Iwamoto, T.; Pusztai, L. Agreement in risk prediction between the 21-gene recurrence score assay (Oncotype DX®) and the PAM50 breast cancer intrinsic Classifier™ in early-stage estrogen receptor-positive breast cancer. Oncologist 2012, 17, 492–498. [Google Scholar] [CrossRef] [Green Version]
- Huang, Z.; Qin, Q.; Xia, L.; Lian, B.; Tan, Q.; Yu, Y.; Mo, Q. Significance of Oncotype DX 21-Gene Test and Expression of Long Non-Coding RNA MALAT1 in Early and Estrogen Receptor-Positive Breast Cancer Patients. Cancer Manag. Res. 2021, 13, 587–593. [Google Scholar] [CrossRef]
- Chen, X.H.; Zhang, W.W.; Wang, J.; Sun, J.Y.; Li, F.Y.; He, Z.Y.; Wu, S.G. 21-gene recurrence score and adjuvant chemotherapy decisions in patients with invasive lobular breast cancer. Biomark. Med. 2019, 13, 83–93. [Google Scholar] [CrossRef]
- Albanell, J.; González, A.; Ruiz-Borrego, M.; Alba, E.; García-Saenz, J.A.; Corominas, J.M.; Burgues, O.; Furio, V.; Rojo, A.; Palacios, J.; et al. Prospective transGEICAM study of the impact of the 21-gene Recurrence Score assay and traditional clinicopathological factors on adjuvant clinical decision making in women with estrogen receptor-positive (ER+) node-negative breast cancer. Ann. Oncol. 2012, 23, 625–631. [Google Scholar] [CrossRef]
- Sparano, J.A.; Paik, S. Development of the 21-Gene Assay and Its Application in Clinical Practice and Clinical Trials. J. Clin. Oncol. 2008, 26, 721–728. [Google Scholar] [CrossRef] [PubMed]
- Geyer, C.E.; Tang, G.; Mamounas, E.P.; Rastogi, P.; Paik, S.; Shak, S.; Baehner, F.L.; Crager, M.; Wickerham, D.L.; Costantino, J.P.; et al. 21-Gene assay as predictor of chemotherapy benefit in HER2-negative breast cancer. NPJ Breast Cancer 2018, 4, 37. [Google Scholar] [CrossRef] [Green Version]
- Maxwell, M.A.; Muscat, G.E. The NR4A subgroup: Immediate early response genes with pleiotropic physiological roles. Nucl. Recept. Signal. 2006, 4, e002. [Google Scholar] [CrossRef] [Green Version]
- Safe, S.; Jin, U.H.; Morpurgo, B.; Abudayyeh, A.; Singh, M.; Tjalkens, R.B. Nuclear receptor 4A (NR4A) family—Orphans no more. J. Steroid Biochem. Mol. Biol. 2016, 157, 48–60. [Google Scholar] [CrossRef] [Green Version]
- Wan, P.K.; Siu, M.K.; Leung, T.H.; Mo, X.T.; Chan, K.K.; Ngan, H.Y. Role of Nurr1 in Carcinogenesis and Tumor Immunology: A State of the Art Review. Cancers 2020, 12, 3044. [Google Scholar] [CrossRef]
- Llopis, S.; Singleton, B.; Duplessis, T.; Carrier, L.; Rowan, B.; Williams, C. Dichotomous roles for the orphan nuclear receptor NURR1 in breast cancer. BMC Cancer 2013, 13, 139. [Google Scholar] [CrossRef] [Green Version]
- Nagy, Á.; Munkácsy, G.; Győrffy, B. Pancancer survival analysis of cancer hallmark genes. Sci. Rep. 2021, 11, 6047. [Google Scholar] [CrossRef] [PubMed]
- Győrffy, B. Survival analysis across the entire transcriptome identifies biomarkers with the highest prognostic power in breast cancer. Comput. Struct. Biotechnol. J. 2021, 19, 4101–4109. [Google Scholar] [CrossRef]
- Gao, J.; Aksoy, B.A.; Dogrusoz, U.; Dresdner, G.; Gross, B.; Sumer, S.O.; Sun, Y.; Jacobsen, A.; Sinha, R.; Larsson, E.; et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci. Signal. 2013, 6, pl1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cerami, E.; Gao, J.; Dogrusoz, U.; Gross, B.E.; Sumer, S.O.; Aksoy, B.A.; Jacobsen, A.; Byrne, C.J.; Heuer, M.L.; Larsson, E.; et al. The cBio Cancer Genomics Portal: An Open Platform for Exploring Multidimensional Cancer Genomics Data. Cancer Discov. 2012, 2, 401. [Google Scholar] [CrossRef]
- Fekete, J.T.; Győrffy, B. ROCplot.org: Validating predictive biomarkers of chemotherapy/hormonal therapy/anti-HER2 therapy using transcriptomic data of 3,104 breast cancer patients. Int. J. Cancer 2019, 145, 3140–3151. [Google Scholar] [CrossRef] [Green Version]
- Carey, L.A.; Perou, C.M.; Livasy, C.A.; Dressler, L.G.; Cowan, D.; Conway, K.; Karaca, G.; Troester, M.A.; Tse, C.K.; Edminton, S.; et al. Race, breast cancer subtypes, and survival in the Carolina Breast Cancer Study. Jama 2006, 295, 2492–2502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jayakrishnan, T.; Aulakh, S.; Baksh, M.; Nguyen, K.; Ailawadhi, M.; Samreen, A.; Parrondo, R.; Sher, T.; Roy, V.; Manochakian, R.; et al. Landmark Cancer Clinical Trials and Real-World Patient Populations: Examining Race and Age Reporting. Cancers 2021, 13, 5770. [Google Scholar] [CrossRef]
- Ford, J.G.; Howerton, M.W.; Lai, G.Y.; Gary, T.L.; Bolen, S.; Gibbons, M.C.; Tilburt, J.; Baffi, C.; Tanpitukpongse, T.P.; Wilson, R.F.; et al. Barriers to recruiting underrepresented populations to cancer clinical trials: A systematic review. Cancer 2008, 112, 228–242. [Google Scholar] [CrossRef]
- Brandt, A.M. Racism and research: The case of the Tuskegee Syphilis Study. Hastings Cent. Rep. 1978, 8, 21–29. [Google Scholar] [CrossRef] [Green Version]
- Henrietta Lacks: Science must right a historical wrong. Nature 2020, 585, 7. [CrossRef]
- Loree, J.M.; Anand, S.; Dasari, A.; Unger, J.M.; Gothwal, A.; Ellis, L.M.; Varadhachary, G.; Kopetz, S.; Overman, M.J.; Raghav, K. Disparity of Race Reporting and Representation in Clinical Trials Leading to Cancer Drug Approvals From 2008 to 2018. JAMA Oncol. 2019, 5, e191870. [Google Scholar] [CrossRef] [PubMed]
- Walsh, S.M.; Zabor, E.C.; Stempel, M.; Morrow, M.; Gemignani, M.L. Does race predict survival for women with invasive breast cancer? Cancer 2019, 125, 3139–3146. [Google Scholar] [CrossRef] [PubMed]
- Yadav, B.S.; Chanana, P.; Jhamb, S. Biomarkers in triple negative breast cancer: A review. World J. Clin. Oncol. 2015, 6, 252–263. [Google Scholar] [CrossRef]
Proliferation Group | Estrogen Group | Invasion Group | HER2 Group | Other Genes | Reference Genes |
---|---|---|---|---|---|
Ki-67 | ER | Stromelysin 3 | GRB7 | GSTM1 | Beta-Actin |
STK15 | PR | Cathepsin L2 | HER2 | BAG1 | GAPDH |
Survivin | Bcl2 | CD68 | RPLP0 | ||
Cyclin B1 | SCUBE2 | GUS | |||
MYBL2 | TFRC |
Group | Gene | Spearman’s Correlation | |||||
---|---|---|---|---|---|---|---|
Black Women | White Women | ||||||
Coefficient | p-Value | R2 | Coefficient | p-Value | R2 | ||
Estrogen | ESR1 | 0.31 | 2.694 × 10−5 | 0.11 | 0.29 | 3.31 × 10−16 | 0.1 |
PGR | 0.43 | 2.09 × 10−9 | 0.18 | 0.28 | 6.10 × 10−15 | 0.09 | |
Bcl2 | 0.39 | 5.61 × 10−8 | 0.18 | 0.37 | 1.94 × 10−25 | 0.14 | |
SCUBE2 | 0.42 | 4.52 × 10−9 | 0.18 | 0.32 | 4.89 × 10−18 | 0.1 | |
Proliferation | MKi-67 | −0.02 | 0.810 | 0 | −0.27 | 1.95 × 10−14 | 0.06 |
STK15 | −0.2 | 6.760 × 10−3 | 0.05 | −0.3 | 1.04 × 10−16 | 0.08 | |
Survivin | −0.31 | 2.747 × 10−5 | 0.1 | −0.33 | 1.02 × 10−20 | 0.1 | |
Cyclin B1 | −0.16 | 0.0315 | 0.03 | −0.27 | 3.37 × 10−14 | 0.07 | |
MYBL2 | −0.29 | 5.675 × 10−5 | 0.1 | −0.37 | 1.83 × 10−25 | 0.12 | |
Invasion | Stromelysin 3 | 0.03 | 0.661 | 0 | −0.15 | 5.914 × 10−5 | 0.03 |
Cathepsin L2 | −0.20 | 7.787 × 10−3 | 0.04 | −0.2 | 2.08 × 10−8 | 0.05 | |
HER2 | GRB7 | −0.08 | 0.308 | 0.01 | 0.02 | 0.513 | 0 |
HER2 | 0.1 | 0.193 | 0 | 0.11 | 2.577 × 10−3 | 0 | |
Other | GSTM1 | 0.05 | 0.512 | 0 | 0.08 | 0.0362 | 0 |
BAG1 | 0.1 | 0.180 | 0.02 | 0.26 | 1.34 × 10−12 | 0.07 | |
CD68 | −0.02 | 0.808 | 0 | −0.07 | 0.0662 | 0.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shaik, S.; Campbell, H.; Williams, C. NURR1 Is Differentially Expressed in Breast Cancer According to Patient Racial Identity and Tumor Subtype. BioMedInformatics 2022, 2, 680-691. https://doi.org/10.3390/biomedinformatics2040045
Shaik S, Campbell H, Williams C. NURR1 Is Differentially Expressed in Breast Cancer According to Patient Racial Identity and Tumor Subtype. BioMedInformatics. 2022; 2(4):680-691. https://doi.org/10.3390/biomedinformatics2040045
Chicago/Turabian StyleShaik, Shahensha, Ha’reanna Campbell, and Christopher Williams. 2022. "NURR1 Is Differentially Expressed in Breast Cancer According to Patient Racial Identity and Tumor Subtype" BioMedInformatics 2, no. 4: 680-691. https://doi.org/10.3390/biomedinformatics2040045
APA StyleShaik, S., Campbell, H., & Williams, C. (2022). NURR1 Is Differentially Expressed in Breast Cancer According to Patient Racial Identity and Tumor Subtype. BioMedInformatics, 2(4), 680-691. https://doi.org/10.3390/biomedinformatics2040045