Surface Refractive Surgery Outcomes in Israeli Combat Pilots
Abstract
:1. Introduction
2. Materials and Methods
2.1. Methods
2.2. Study Participants
2.3. Data Collection
2.4. Surgical Technique
2.5. Statistical Analysis
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Achiron, A.; Gur, Z.; Aviv, U.; Hilely, A.; Mimouni, M.; Karmona, L.; Rokach, L.; Kaiserman, I. Predicting Refractive Surgery Outcome: Machine Learning Approach with Big Data. J. Refract. Surg. 2017, 33, 592–597. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Li, M.; Cen, Z. Excimer Laser Corneal Refractive Surgery in the Clinic: A Systematic Review and Meta-analysis. Comput. Math. Methods Med. 2022, 2022, 7130422. [Google Scholar] [CrossRef] [PubMed]
- Hamam, K.M.; Gbreel, M.I.; Elsheikh, R.; Benmelouka, A.Y.; Ouerdane, Y.; Hassan, A.K.; Hamdallah, A.; Elsnhory, A.B.; Nourelden, A.Z.; Masoud, A.T.; et al. Outcome comparison between wavefront-guided and wavefront-optimized photorefractive keratectomy: A systematic review and meta-analysis. Indian J. Ophthalmol. 2020, 68, 2691–2698. [Google Scholar] [CrossRef] [PubMed]
- Ang, M.; Gatinel, D.; Reinstein, D.Z.; Mertens, E.; del Barrio, J.L.A.; Alió, J.L. Refractive surgery beyond 2020. Eye 2021, 35, 362–382. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, A.H.; Galvis, V.; Tello, A.; Parra, M.M.; Rojas, M.Á.; Arba, M.S.; Camacho, A.P. Fellow eye comparison between alcohol-assisted and single-step transepithelial photorefractive keratectomy: Late mid-term outcomes. Rom. J. Ophthalmol. 2020, 64, 176–183. [Google Scholar] [CrossRef] [PubMed]
- Duvdevan, N.; Mimouni, M.; Dominitz, Y.; Sela, T.; Munzer, G.; Achiron, A.; Kaiserman, I. Flap protection during laser-assisted in situ keratomileusis improves refractive outcomes in high myopic astigmatism. Clin. Exp. Vis. Eye Res. 2019, 2, 11–17. [Google Scholar] [CrossRef]
- Stern, C. New refractive surgery procedures in ophthalmology and the influence on Pilot’s fitness for flying. Eur. J. Med. Res. 1999, 4, 382–384. [Google Scholar]
- Meduri, A.; Grenga, P.L.; Scorolli, L.; Ceruti, P.; Ferreri, G. Role of cysteine in corneal wound healing after photorefractive keratectomy. Ophthalmic Res. 2009, 41, 76–82. [Google Scholar] [CrossRef]
- Scorolli, L.; Meduri, A.; Morara, M.; Scalinci, S.Z.; Greco, P.; Meduri, R.A.; Colombati, S. Effect of cysteine in transgenic mice on healing of corneal epithelium after excimer laser photoablation. Ophthalmologica 2008, 222, 380–385. [Google Scholar] [CrossRef]
- Meduri, A.; Bergandi, L.; Perroni, P.; Silvagno, F.; Aragona, P. Oral l-Cysteine Supplementation Enhances the Long Term-Effect of Topical Basic Fibroblast Growth Factor (bFGF) in Reducing the Corneal Haze after Photorefractive Keratectomy in Myopic Patients. Pharmaceuticals 2020, 13, 67. [Google Scholar] [CrossRef] [Green Version]
- Meduri, A.; Scorolli, L.; Scalinci, S.Z.; Grenga, P.L.; Lupo, S.; Rechichi, M.; Meduri, E. Effect of the combination of basic fibroblast growth factor and cysteine on corneal epithelial healing after photorefractive keratectomy in patients affected by myopia. Indian J. Ophthalmol. 2014, 62, 424–428. [Google Scholar] [CrossRef] [PubMed]
- Tomás-Juan, J.; Murueta-Goyena Larrañaga, A.; Hanneken, L. Corneal Regeneration After Photorefractive Keratectomy: A Review. J. Optom. 2015, 8, 149–169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stanley, P.F.; Tanzer, D.J.; Schallhorn, S.C. Laser refractive surgery in the United States Navy. Curr. Opin. Ophthalmol. 2008, 19, 321–324. [Google Scholar] [CrossRef] [PubMed]
- Refractive Surgery Program Policy Changes. Air Force. Available online: https://www.af.mil/News/Article-Display/Article/126747/refractive-surgery-program-policy-changes/https%3A%2F%2Fwww.af.mil%2Fnews%2Farticle-Display%2Farticle%2F126747%2Frefractive-surgery-program-policy-changes%2F (accessed on 13 November 2022).
- Levy, Y.; Zadok, D.; Barenboim, E. Laser in situ keratomileusis in a combat jet aircraft pilot. J. Cataract. Refract. Surg. 2003, 29, 1239–1241. [Google Scholar] [CrossRef]
- The Israeli Air Force. Available online: https://www.iaf.org.il/1859-26940-he/IAF.aspx (accessed on 13 November 2022).
- Tanzer, D.J.; Brunstetter, T.; Zeber, R.; Hofmeister, E.; Kaupp, S.; Kelly, N.; Mirzaoff, M.; Sray, W.; Brown, M.; Schallhorn, S. Laser in situ keratomileusis in United States Naval aviators. J. Cataract. Refract. Surg. 2013, 39, 1047–1058. [Google Scholar] [CrossRef]
- Hammond, M.D.; Madigan, W.P.; Bower, K.S. Refractive surgery in the United States Army, 2000–2003. Ophthalmology 2005, 112, 184–190. [Google Scholar] [CrossRef]
- Godiwalla, R.Y.; Magone, M.T.; Kaupp, S.B.; Jung, H.; Cason, J.B. Long-Term Outcomes of Refractive Surgery Performed during the Military. Mil. Med. 2019, 184, e808–e812. [Google Scholar] [CrossRef]
- Schallhorn, S.C.; Blanton, C.L.; Kaupp, S.E.; Sutphin, J.; Gordon, M.; Goforth, H.; Butler, F.K. Preliminary results of photorefractive keratectomy in active-duty United States Navy personnel. Ophthalmology 1996, 103, 5–22. [Google Scholar] [CrossRef]
- Sia, R.K.; Ryan, D.S.; Rivers, B.A.; Logan, L.A.; Eaddy, J.B.; Peppers, L.; Rodgers, S.B. Vision-Related Quality of Life and Perception of Military Readiness and Capabilities Following Refractive Surgery Among Active Duty U.S. Military Service Members. J. Refract. Surg. 2018, 34, 597–603. [Google Scholar] [CrossRef]
- Ang, B.C.H.; Yap, S.C.; Toh, Z.H.; Lim, E.W.L.; Tan, M.M.H.; Nah, G.K.M.; Zhao, P.S.B.; Tan, M.C.L. Refractive outcomes, corneal haze and endothelial cell loss after myopic photorefractive keratectomy in an Asian population: The Singapore Armed Forces’ experience. Clin. Exp. Ophthalmol. 2020, 48, 558–568. [Google Scholar] [CrossRef]
- Richmond, C.J.; Barker, P.D.; Levine, E.M.; Hofmeister, E.M. Laser in situ keratomileusis flap stability in an aviator following aircraft ejection. J. Cataract. Refract. Surg. 2016, 42, 1681–1683. [Google Scholar] [CrossRef] [PubMed]
- Capó-Aponte, J.E.; Hilber, D.J.; Urosevich, T.G.; Lattimore, M.R.; Weaver, J.L. Military Aircrew Eyewear Survey: Operational Issues. Aviat. Space Environ. Med. 2013, 84, 814–822. [Google Scholar] [CrossRef] [PubMed]
- Kaluzny, B.J.; Cieslinska, I.; Arba Mosquera, S.; Verma, S. Single-Step Transepithelial PRK vs Alcohol-Assisted PRK in Myopia and Compound Myopic Astigmatism Correction. Medicine 2016, 95, e1993. [Google Scholar] [CrossRef] [PubMed]
- Moon, C.H. Four-year visual outcomes after photorefractive keratectomy in pilots with low-moderate myopia. Br. J. Ophthalmol. 2016, 100, 253–257. [Google Scholar] [CrossRef]
- See, B.; Tan, M.; Chia, S.E.; Gan, W.H.; Low, R.; Nah, G. Photorefractive keratectomy in young Asian aviators with low-moderate myopia. Aviat. Space Environ. Med. 2014, 85, 25–29. [Google Scholar] [CrossRef]
- Van de Pol, C.; Greig, J.L.; Estrada, A.; Bissette, G.M.; Bower, K.S. Visual and flight performance recovery after PRK or LASIK in helicopter pilots. Aviat. Space Environ. Med. 2007, 78, 547–553. [Google Scholar]
- Gaeckle, H.C. Early clinical outcomes and comparison between trans-PRK and PRK, regarding refractive outcome, wound healing, pain intensity and visual recovery time in a real-world setup. BMC Ophthalmol. 2021, 21, 181. [Google Scholar] [CrossRef]
- Ivarsen, A.; Hjortdal, J. Seven-year changes in corneal power and aberrations after PRK or LASIK. Investig. Opthalmol. Vis. Sci. 2012, 53, 6011–6016. [Google Scholar] [CrossRef] [Green Version]
- Alió, J.L.; Muftuoglu, O.; Ortiz, D.; Artola, A.; Pérez-Santonja, J.J.; de Luna, G.C.; Abu-Mustafa, S.K.; Garcia, M.J. Ten-year follow-up of photorefractive keratectomy for myopia of less than -6 diopters. Am. J. Ophthalmol. 2008, 145, 29–36. [Google Scholar] [CrossRef]
- Goodman, R.L.; Johnson, D.A.; Dillon, H.; Edelhauser, H.F.; Waller, S.G. Laser in situ keratomileusis flap stability during simulated aircraft ejection in a rabbit model. Cornea 2003, 22, 142–145. [Google Scholar] [CrossRef]
- Gibson, R.C.; Mader, T.H.; Schallhorn, S.C.; Pesudovs, K.; Lipsky, W.; Elias, R.; Jennings, R.T.; Fogarty, J.A.; Garriott, R.A.; Garriott, O.K.; et al. Visual stability of laser vision correction in an astronaut on a Soyuz mission to the International Space Station. J. Cataract. Refract. Surg. 2012, 38, 1486–1491. [Google Scholar] [CrossRef] [PubMed]
- Schallhorn, C.; Schallhorn, S. Refractive Surgery in Aviators. In Ophthalmology in Extreme Environments. Essentials in Ophthalmology; Subramanian, P.S., Ed.; Springer International Publishing: Cham, Switzerland, 2017; pp. 29–54. [Google Scholar] [CrossRef]
Author | Region | No. of Eyes | Follow-Up (Months) | Subjects | Pre-Operative SE (D) | Follow-Up | Post-Operative SE (D) | % of Eyes Achieved ≥20/20 | % of Eyes within ±0.50 D | Comments |
---|---|---|---|---|---|---|---|---|---|---|
Tanzer et al. [17] | United States | 651 | 3 | US Naval aviators | −2.56 ± na, 1.86 ± na, −0.34 ± na (myopia, hyperopia, and mixed astigmatism, respectively) | 3 months | na | 98.1%, 100%, and 92.3% (myopia, hyperopia, and mixed astigmatism, respectively | na | Refractive stability was achieved at 1 month post-surgery. |
Hammond et al. [18] | United States | 32,068 | na | Soldiers whose mission involves at the line of battle or behind hostile lines. | Na | Na | na | 85.6% | na | - |
Godiwalla et al. [19] | United States | 160 | 48–204 | Military servicemen. | Na | 4–17 years | na | 99% | 81% | - |
Schallhorn et al. [20] | United States | 30 | 12 | Active duty Navy/Marine personnel. | −3.35 ± na | 1 year | 0.32 ± 0.53 | 100% | 70% | - |
Sia et al. [21] | United States | 720 (360 patients) | na | US military service members | −2.97 ± 1.86 | na | Na | 99.7% | Na | - |
Ang et al. [22] | Singapore | 309 | 12 | Singapore Armed Forces servicemen | −3.33 ± 1.15 | 1 year | −0.03 ± 0.15 | 95.5% | 99.7% | - |
Author | Region | No. of Eyes | Follow-Up (Months) | Subjects | Pre-Operative SE (D) | Follow-Up | Post-Operative SE (D) | % of Eyes Achieved ≥20/20 | % of Eyes within ±0.50 D | Comments |
---|---|---|---|---|---|---|---|---|---|---|
Moon et al. [26] | Korea | 38 | 48 | Air Force pilots | 1.51 ± 1.15 | 4 years | −0.29 ± 0.51 | 89.5% | 71.1% | The refraction stabilized by 6 months and was maintained up to the 4-year follow-up. |
See et al. [27] | Singapore | 149 | 12 | Air Force pilot | −3.39 ± 1.19 | 1 year | 0 ± 0.02 | 98.5% | 100% | The cumulative incidence of retreatments was 6.7%. Refractive stability was achieved at 3 months post-surgery. |
Van de Pol. [28] | United States | 18 | 6 | Black Hawk helicopter pilots | −1.52 ± na | 6 months | na | na | na | Mean UDVA post-operatively was −0.13 ± 0.1 |
Right Eye | Left Eye | |
---|---|---|
Corneal hysteresis, mmHg | 9.92 ± 1.48 | 9.89 ± 1.51 |
Corneal resistance factor, mmHg | 9.22 ± 1.66 | 9.48 ± 1.77 |
Waveform score | 6.50 ± 1.54 | 5.36 ± 1.75 |
Pupil size, mm | 6.46 ± 0.66 | 6.50 ± 0.83 |
K1, D | 43.18 ± 1.65 | 43.24 ± 1.72 |
K2, D | 44.11 ± 1.84 | 44.25 ± 1.94 |
Kmean, D | 43.64 ± 1.72 | 43.73 ± 1.79 |
K Cylinder, D | −0.79 ± 0.75 | −0.71 ± 1.02 |
Pachymetry at the thinnest point, µm | 525.3 ± 40.9 | 526.9 ± 40.6 |
Treatment sphere, D | −1.93 ± 0.97 | −1.91 ± 0.96 |
Treatment cylinder, D | −0.87 ± 0.59 | −0.94 ± 0.66 |
Target spherical equivalent, D | 0.27 ± 0.17 | 0.28 ± 0.23 |
Optical zone, mm | 7.01 ± 0.42 | 7.04 ± 0.41 |
Treatment zone, mm | 1.06 ± 0.27 | 1.05 ± 0.21 |
Ablation zone, mm | 8.21 ± 0.29 | 8.23 ± 0.26 |
Central ablation, µm | 60.0 ± 23.3 | 60.4 ± 24.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Achiron, A.; Shemesh, N.; Yahalomi, T.; Barequet, D.; Biran, A.; Levinger, E.; Levinger, N.; Levinger, S.; Hirsch, A. Surface Refractive Surgery Outcomes in Israeli Combat Pilots. BioMedInformatics 2022, 2, 692-700. https://doi.org/10.3390/biomedinformatics2040046
Achiron A, Shemesh N, Yahalomi T, Barequet D, Biran A, Levinger E, Levinger N, Levinger S, Hirsch A. Surface Refractive Surgery Outcomes in Israeli Combat Pilots. BioMedInformatics. 2022; 2(4):692-700. https://doi.org/10.3390/biomedinformatics2040046
Chicago/Turabian StyleAchiron, Asaf, Nadav Shemesh, Tal Yahalomi, Dana Barequet, Amit Biran, Eliya Levinger, Nadav Levinger, Shmuel Levinger, and Ami Hirsch. 2022. "Surface Refractive Surgery Outcomes in Israeli Combat Pilots" BioMedInformatics 2, no. 4: 692-700. https://doi.org/10.3390/biomedinformatics2040046
APA StyleAchiron, A., Shemesh, N., Yahalomi, T., Barequet, D., Biran, A., Levinger, E., Levinger, N., Levinger, S., & Hirsch, A. (2022). Surface Refractive Surgery Outcomes in Israeli Combat Pilots. BioMedInformatics, 2(4), 692-700. https://doi.org/10.3390/biomedinformatics2040046