Vegetation Structure and Distribution Across Scales in a Large Metropolitan Area: Case Study of Austin MSA, Texas, USA
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. LiDAR Vegetation Mapping
2.3. Vegetation Classification Based on Height
2.4. Selection of Predictor/Independent Variables and Overlay Analyses
2.5. Statistical Analyses
3. Results
3.1. Parcel Characteristics
3.2. Vegetation Characteristics
3.3. Vegetation and Parcel Comparisons at MSA Scale
3.4. Variation Among Cities
3.5. City-Scale Variation in Vegetation
4. Discussion
4.1. The Role of Physical Geography in Vegetation Structure
4.2. Metropolitan-Scale Vegetation Patterns
4.3. Socioeconomic Factors Affecting Vegetation Distribution
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cousins, S.A.; Auffret, A.G.; Lindgren, J.; Tränk, L. Regional-scale land-cover change during the 20th century and its consequences for biodiversity. Ambio 2015, 44, 17–27. [Google Scholar] [CrossRef]
- Lambin, E.F.; Geist, H.J. Land-Use and Land-Cover Change: Local Processes and Global Impacts; Springer Science & Business Media: Heidelburg, Germany, 2008; pp. 9–15. [Google Scholar]
- Vitousek, P.M. Beyond global warming: Ecology and global change. Ecology 1994, 75, 1861–1876. [Google Scholar] [CrossRef]
- Brunner, J.; Cozens, P. ‘Where have all the trees gone?’Urban consolidation and the demise of urban vegetation: A case study from Western Australia. Plan. Pract. Res. 2013, 28, 231–255. [Google Scholar] [CrossRef]
- Fuller, R.A.; Gaston, K.J. The scaling of green space coverage in European cities. Biol. Lett. 2009, 5, 352–355. [Google Scholar] [CrossRef] [PubMed]
- Qian, Y.; Zhou, W.; Li, W.; Han, L. Understanding the dynamic of greenspace in the urbanized area of Beijing based on high resolution satellite images. Urban For. Urban Green. 2015, 14, 39–47. [Google Scholar] [CrossRef]
- Yu, Z.; Wang, Y.; Deng, J.; Shen, Z.; Wang, K.; Zhu, J.; Gan, M. Dynamics of hierarchical urban green space patches and implications for management policy. Sensors 2017, 17, 1304. [Google Scholar] [CrossRef]
- Zhou, W.; Wang, J.; Cadenasso, M.L. Effects of the spatial configuration of trees on urban heat mitigation: A comparative study. Remote Sens. Environ. 2017, 195, 43. [Google Scholar] [CrossRef]
- Lo, A.Y.; Jim, C.Y. Differential community effects on perception and use of urban greenspaces. Cities 2010, 27, 430–442. [Google Scholar] [CrossRef]
- Sivam, A.; Karuppannan, S.; Mobbs, M. How “open” are open spaces: Evaluating transformation of open space at residential level in Adelaide–a case study. Local Environ. 2012, 17, 815–836. [Google Scholar] [CrossRef]
- Wolch, J.R.; Byrne, J.; Newell, J.P. Urban green space, public health, and environmental justice: The challenge of making cities ‘just green enough’. Landsc. Urban Plan. 2014, 125, 234–244. [Google Scholar] [CrossRef]
- He, C.; Liu, Z.; Gou, S.; Zhang, Q.; Zhang, J.; Xu, L. Detecting global urban expansion over the last three decades using a fully convolutional network. Environ. Res. Lett. 2019, 14, 034008. [Google Scholar] [CrossRef]
- Pregitzer, C.C.; Ashton, M.S.; Charlop-Powers, S.; D’Amato, A.W.; Frey, B.R.; Gunther, B.; Hallett, R.A.; Pregitzer, K.S.; Woodall, C.W.; Bradford, M.A. Defining and assessing urban forests to inform management and policy. Environ. Res. Lett. 2019, 14, 085002. [Google Scholar] [CrossRef]
- Benn, S.; Gaus, G. Public and Private in Social Life; Croom Helm: London, UK, 1983; pp. 121–125. [Google Scholar]
- Madanipour, A. Why are the design and development of public spaces significant for cities? Environ. Plan. B Plan. Des. 1999, 26, 879–891. [Google Scholar] [CrossRef]
- Steenberg, J.W.; Millward, A.A.; Duinker, P.N.; Nowak, D.J.; Robinson, P.J. Neighbourhood-scale urban forest ecosystem classification. J. Environ. Manag. 2015, 163, 134–145. [Google Scholar] [CrossRef]
- Jamil, R.; Julian, J.P.; Jensen, J.L.; Meitzen, K.M. Urban Green Infrastructure Connectivity: The Role of Private Semi-Natural Areas. Land 2024, 13, 1213. [Google Scholar] [CrossRef]
- Harris, V.; Kendal, D.; Hahs, A.K.; Threlfall, C.G. Green space context and vegetation complexity shape people’s preferences for urban public parks and residential gardens. Landsc. Res. 2018, 43, 150–162. [Google Scholar] [CrossRef]
- Goddard, M.A.; Dougill, A.J.; Benton, T.G. Scaling up from gardens: Biodiversity conservation in urban environments. Trends Ecol. Evol. 2010, 25, 90–98. [Google Scholar] [CrossRef]
- Belaire, J.A.; Whelan, C.J.; Minor, E.S. Having our yards and sharing them too: The collective effects of yards on native bird species in an urban landscape. Ecol. Appl. 2014, 24, 2132–2143. [Google Scholar] [CrossRef]
- Paker, Y.; Yom-Tov, Y.; Alon-Mozes, T.; Barnea, A. The effect of plant richness and urban garden structure on bird species richness, diversity and community structure. Landsc. Urban Plan. 2014, 122, 186–195. [Google Scholar] [CrossRef]
- Vergnes, A.; Le Viol, I.; Clergeau, P. Green corridors in urban landscapes affect the arthropod communities of domestic gardens. Biol. Conserv. 2012, 145, 171–178. [Google Scholar] [CrossRef]
- Casalegno, S.; Anderson, K.; Cox, D.T.; Hancock, S.; Gaston, K.J. Ecological connectivity in the three-dimensional urban green volume using waveform airborne lidar. Sci. Rep. 2017, 7, 45571. [Google Scholar] [CrossRef]
- Ossola, A.; Hopton, M.E. Measuring urban tree loss dynamics across residential landscapes. Sci. Total Environ. 2018, 612, 940–949. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, M.G.; Bennett, E.M.; Gonzalez, A. Linking landscape connectivity and ecosystem service provision: Current knowledge and research gaps. Ecosystems 2013, 16, 894–908. [Google Scholar] [CrossRef]
- Kolbe, J.J.; VanMiddlesworth, P.; Battles, A.C.; Stroud, J.T.; Buffum, B.; Forman, R.T.; Losos, J.B. Determinants of spread in an urban landscape by an introduced lizard. Landsc. Ecol. 2016, 31, 1795–1813. [Google Scholar] [CrossRef]
- Treby, D.L.; Castley, J.G. Distribution and abundance of hollow-bearing trees in urban forest fragments. Urban For. Urban Green. 2015, 14, 655–663. [Google Scholar] [CrossRef]
- Stagoll, K.; Lindenmayer, D.B.; Knight, E.; Fischer, J.; Manning, A.D. Large trees are keystone structures in urban parks. Conserv. Lett. 2012, 5, 115–122. [Google Scholar] [CrossRef]
- Fontana, S.; Sattler, T.; Bontadina, F.; Moretti, M. How to manage the urban green to improve bird diversity and community structure. Landsc. Urban Plan. 2011, 101, 278–285. [Google Scholar] [CrossRef]
- Savard, J.-P.L.; Clergeau, P.; Mennechez, G. Biodiversity concepts and urban ecosystems. Landsc. Urban Plan. 2000, 48, 131–142. [Google Scholar] [CrossRef]
- Forman, R.T. Towns, Ecology, and the Land; Cambridge University Press: Cambridge, UK, 2019; pp. 9–18. [Google Scholar]
- Dobbs, C.; Nitschke, C.; Kendal, D. Assessing the drivers shaping global patterns of urban vegetation landscape structure. Sci. Total Environ. 2017, 592, 171–177. [Google Scholar] [CrossRef]
- Groffman, P.M.; Cavender-Bares, J.; Bettez, N.D.; Grove, J.M.; Hall, S.J.; Heffernan, J.B.; Hobbie, S.E.; Larson, K.L.; Morse, J.L.; Neill, C. Ecological homogenization of urban USA. Front. Ecol. Environ. 2014, 12, 74–81. [Google Scholar] [CrossRef]
- Steele, M.; Wolz, H. Heterogeneity in the land cover composition and configuration of US cities: Implications for ecosystem services. Landsc. Ecol. 2019, 34, 1247–1261. [Google Scholar] [CrossRef]
- Cox, L.; Hansen, V.; Andrews, J.; Thomas, J.; Heilke, I.; Flanders, N.; Walton, B. Land Use: A Powerful Determinant of Sustainable & Healthy Communities; US Environmental Protection Agency: Washington, DC, USA, 2013. Available online: https://www.epa.gov/sites/default/files/2016-09/documents/fy13productnheerl4121land_use_synthesis.pdf (accessed on 25 February 2024).
- McDonald, R.I.; Biswas, T.; Chakraborty, T.; Kroeger, T.; Cook-Patton, S.C.; Fargione, J.E. Current inequality and future potential of US urban tree cover for reducing heat-related health impacts. NPJ Urban Sustain. 2024, 4, 18. [Google Scholar] [CrossRef]
- Ziter, C.D.; Pedersen, E.J.; Kucharik, C.J.; Turner, M.G. Scale-dependent interactions between tree canopy cover and impervious surfaces reduce daytime urban heat during summer. Proc. Natl. Acad. Sci. USA 2019, 116, 7575–7580. [Google Scholar] [CrossRef] [PubMed]
- Nowak, D.J.; Greenfield, E.J. Tree and impervious cover in the United States. Landsc. Urban Plan. 2012, 107, 21–30. [Google Scholar] [CrossRef]
- Locke, D.H.; Hall, B.; Grove, J.M.; Pickett, S.T.; Ogden, L.A.; Aoki, C.; Boone, C.G.; O’Neil-Dunne, J.P. Residential housing segregation and urban tree canopy in 37 US Cities. NPJ Urban Sustain. 2021, 1, 15. [Google Scholar] [CrossRef]
- Liu, H.; Dong, P. A new method for generating canopy height models from discrete-return LiDAR point clouds. Remote Sens. Lett. 2014, 5, 575–582. [Google Scholar] [CrossRef]
- Kulawardhana, R.W.; Popescu, S.C.; Feagin, R.A. Fusion of lidar and multispectral data to quantify salt marsh carbon stocks. Remote Sens. Environ. 2014, 154, 345–357. [Google Scholar] [CrossRef]
- Hartfield, K.A.; Landau, K.I.; Van Leeuwen, W.J. Fusion of high resolution aerial multispectral and LiDAR data: Land cover in the context of urban mosquito habitat. Remote Sens. 2011, 3, 2364–2383. [Google Scholar] [CrossRef]
- MacFaden, S.W.; O′Neil-Dunne, J.P.; Royar, A.R.; Lu, J.W.; Rundle, A.G. High-resolution tree canopy mapping for New York City using LIDAR and object-based image analysis. J. Cell. Physiol. 2012, 6, 063567. [Google Scholar] [CrossRef]
- Data USA. San Marcos, TX. Available online: https://datausa.io/profile/geo/san-marcos-tx/ (accessed on 29 August 2024).
- Service, N.W. Austin Climate Summary. Available online: https://www.weather.gov/media/ewx/climate/ClimateSummary-ewx-Austin.pdf (accessed on 29 August 2024).
- TPWD, T.P.A.W. By Ecoregion (Vector). Available online: https://tpwd.texas.gov/gis/programs/landscape-ecology/by-ecoregion-vector (accessed on 29 August 2023).
- Chapman, B.R.; Bolen, E.G. The Natural History of the Edwards Plateau: The Texas Hill Country; Texas A&M University Press: College Station, TX, USA, 2020; pp. 51–55. [Google Scholar]
- Diamond, D.D.; Smeins, F.E. Composition, classification and species response patterns of remnant tallgrass prairies in Texas. Am. Midl. Nat. 1985, 113, 294–308. [Google Scholar] [CrossRef]
- Heidemann, H.K. Lidar Base Specification; 2328-7055; US Geological Survey: Washington, DC, USA, 2012; pp. 41–42.
- Jamil, R. Social Demands and Geospatial Distributions of Urban Green Spaces and Blue Spaces. Ph.D. Dissertation, Texas State University, San Marcos, TX, USA, 2024. Available online: https://digital.library.txst.edu/items/0e6cd5d2-8801-4370-b427-c7e1d0d8d551/full (accessed on 28 February 2025).
- Jennings, S.; Brown, N.; Sheil, D. Assessing Forest Canopies and Understorey Illumination: Canopy Closure, Canopy Cover and Other Measures; Oxford University Press: Oxford, UK, 1999; Volume 72, pp. 59–74. [Google Scholar] [CrossRef]
- Hermansen-Baez, A. Urban Tree Canopy Assessment: A Community’s Path to Understanding and Managing the Urban Forest; FS-1121; U.S. Department of Agriculture, Forest Service: Washington, DC, USA, 2019; pp. 1–16.
- Brokaw, N.V. The definition of treefall gap and its effect on measures of forest dynamics. Biotropica 1982, 14, 158–160. [Google Scholar] [CrossRef]
- Ucar, Z.; Bettinger, P.; Merry, K.; Akbulut, R.; Siry, J. Estimation of Urban Woody Vegetation Cover Using Multispectral Imagery and LiDAR; Elsevier: Amsterdam, The Netherlands, 2018; Volume 29, pp. 248–260. [Google Scholar] [CrossRef]
- Weinstein, B.G.; Marconi, S.; Bohlman, S.A.; Zare, A.; Singh, A.; Graves, S.J.; White, E.P. A Remote Sensing Derived Data Set of 100 Million Individual Tree Crowns for the National Ecological Observatory Network; eLife Sciences Publications, Ltd.: Zurich, Switzerland, 2021; Volume 10. [Google Scholar] [CrossRef]
- Salmond, J.A.; Tadaki, M.; Vardoulakis, S.; Arbuthnott, K.; Coutts, A.; Demuzere, M.; Dirks, K.N.; Heaviside, C.; Lim, S.; Macintyre, H. Health and climate related ecosystem services provided by street trees in the urban environment. Environ. Health 2016, 15, 95–111. [Google Scholar] [CrossRef] [PubMed]
- Dai, X.; Li, Z.; Lin, S.; Xu, W. Assessment and zoning of eco-environmental sensitivity for a typical developing province in China. Stoch. Environ. Res. Risk Assess. 2012, 26, 1095–1107. [Google Scholar] [CrossRef]
- Cook, E.M.; Hall, S.J.; Larson, K.L. Residential landscapes as social-ecological systems: A synthesis of multi-scalar interactions between people and their home environment. Urban Ecosyst. 2012, 15, 19–52. [Google Scholar] [CrossRef]
- Pickett, S.T.; Cadenasso, M.L.; Grove, J.M.; Boone, C.G.; Groffman, P.M.; Irwin, E.; Kaushal, S.S.; Marshall, V.; McGrath, B.P.; Nilon, C.H. Urban ecological systems: Scientific foundations and a decade of progress. J. Environ. Manag. 2011, 92, 331–362. [Google Scholar] [CrossRef] [PubMed]
- Smith, R.M.; Gaston, K.J.; Warren, P.H.; Thompson, K. Urban domestic gardens (V): Relationships between landcover composition, housing and landscape. Landsc. Ecol. 2005, 20, 235–253. [Google Scholar] [CrossRef]
- Verbeeck, K.; Van Orshoven, J.; Hermy, M. Measuring extent, location and change of imperviousness in urban domestic gardens in collective housing projects. Landsc. Urban Plan. 2011, 100, 57–66. [Google Scholar] [CrossRef]
- Breen, R. Regression Models: Censored, Sample Selected, or Truncated Data; Sage: Riverside County, CA, USA, 1996; pp. 12–18. [Google Scholar]
- Omernik, J.M.; Griffith, G.E. Ecoregions of the conterminous United States: Evolution of a hierarchical spatial framework. Environ. Manag. 2014, 54, 1249–1266. [Google Scholar] [CrossRef]
- Wilcox, B.P.; Sorice, M.G.; Young, M.H. Dryland ecohydrology in the anthropocene: Taking stock of human–ecological interactions. Geogr. Compass 2011, 5, 112–127. [Google Scholar] [CrossRef]
- Nielsen-Gammon, J.W.; Banner, J.L.; Cook, B.I.; Tremaine, D.M.; Wong, C.I.; Mace, R.E.; Gao, H.; Yang, Z.L.; Gonzalez, M.F.; Hoffpauir, R. Unprecedented drought challenges for Texas water resources in a changing climate: What do researchers and stakeholders need to know? Earth′s Future 2020, 8, e2020EF001552. [Google Scholar] [CrossRef]
- Willis, E.M.; Koeser, A.K.; Clarke, M.; Hansen, G.; Hilbert, D.R.; Lusk, M.G.; Roman, L.A.; Warner, L.A. Greening development: Reducing urban tree canopy loss through incentives. Urban For. Urban Green. 2024, 91, 128184. [Google Scholar] [CrossRef]
- Lavy, B.L.; Hagelman III, R.R. Protecting the urban forest: Variations in standards and sustainability dimensions of municipal tree preservation ordinances. Urban For. Urban Green. 2019, 44, 126394. [Google Scholar] [CrossRef]
- Larson, K.L.; Andrade, R.; Nelson, K.C.; Wheeler, M.M.; Engebreston, J.M.; Hall, S.J.; Avolio, M.L.; Groffman, P.M.; Grove, M.; Heffernan, J.B. Municipal regulation of residential landscapes across US cities: Patterns and implications for landscape sustainability. J. Environ. Manag. 2020, 275, 111132. [Google Scholar] [CrossRef] [PubMed]
- Jim, C.Y. Green-space preservation and allocation for sustainable greening of compact cities. Cities 2004, 21, 311–320. [Google Scholar] [CrossRef]
- Tan, P.Y.; Wang, J.; Sia, A. Perspectives on five decades of the urban greening of Singapore. Cities 2013, 32, 24–32. [Google Scholar] [CrossRef]
- Escobedo, F.J.; Kroeger, T.; Wagner, J.E. Urban forests and pollution mitigation: Analyzing ecosystem services and disservices. Environ. Pollut. 2011, 159, 2078–2087. [Google Scholar] [CrossRef]
- Jim, C.Y.; Shan, X. Socioeconomic effect on perception of urban green spaces in Guangzhou, China. Cities 2013, 31, 123–131. [Google Scholar] [CrossRef]
- Morgan Grove, J.; Cadenasso, M.L.; Burch Jr, W.R.; Pickett, S.T.; Schwarz, K.; O′Neil-Dunne, J.; Wilson, M.; Troy, A.; Boone, C. Data and methods comparing social structure and vegetation structure of urban neighborhoods in Baltimore, Maryland. Soc. Nat. Resour. 2006, 19, 117–136. [Google Scholar] [CrossRef]
- Troy, A.R.; Grove, J.M.; O’Neil-Dunne, J.P.; Pickett, S.T.; Cadenasso, M.L. Predicting opportunities for greening and patterns of vegetation on private urban lands. Environ. Manag. 2007, 40, 394–412. [Google Scholar] [CrossRef]
- Hope, D.; Gries, C.; Zhu, W.; Fagan, W.F.; Redman, C.L.; Grimm, N.B.; Nelson, A.L.; Martin, C.; Kinzig, A. Socioeconomics drive urban plant diversity. Proc. Natl. Acad. Sci. USA 2003, 100, 8788–8792. [Google Scholar] [CrossRef]
- Martin, C.A.; Warren, P.S.; Kinzig, A.P. Neighborhood socioeconomic status is a useful predictor of perennial landscape vegetation in residential neighborhoods and embedded small parks of Phoenix, AZ. Landsc. Urban Plan. 2004, 69, 355–368. [Google Scholar] [CrossRef]
- Escobedo, F.J.; Adams, D.C.; Timilsina, N. Urban forest structure effects on property value. Ecosyst. Serv. 2015, 12, 209–217. [Google Scholar] [CrossRef]
- Sayler, K.L.; Acevedo, W.; Taylor, J.L. Status and trends of land change in selected US ecoregions-2000 to 2011. Photogramm. Eng. Remote Sens. 2016, 82, 687–697. [Google Scholar] [CrossRef]
- Kovacs, K.; West, G.; Nowak, D.J.; Haight, R.G. Tree cover and property values in the United States: A national meta-analysis. Ecol. Econ. 2022, 197, 107424. [Google Scholar] [CrossRef]
- Seto, K.C.; Sánchez-Rodríguez, R.; Fragkias, M. The new geography of contemporary urbanization and the environment. Annu. Rev. Environ. Resour. 2010, 35, 167–194. [Google Scholar] [CrossRef]
- Eigenbrod, F.; Bell, V.; Davies, H.; Heinemeyer, A.; Armsworth, P.R.; Gaston, K.J. The impact of projected increases in urbanization on ecosystem services. Proc. R. Soc. B Biol. Sci. 2011, 278, 3201–3208. [Google Scholar] [CrossRef]
- Sandifer, P.A.; Sutton-Grier, A.E.; Ward, B.P. Exploring connections among nature, biodiversity, ecosystem services, and human health and well-being: Opportunities to enhance health and biodiversity conservation. Ecosyst. Serv. 2015, 12, 1–15. [Google Scholar] [CrossRef]
- Davies, Z.G.; Edmondson, J.L.; Heinemeyer, A.; Leake, J.R.; Gaston, K.J. Mapping an urban ecosystem service: Quantifying above-ground carbon storage at a city-wide scale. J. Appl. Ecol. 2011, 48, 1125–1134. [Google Scholar] [CrossRef]
- Bergen, K.; Goetz, S.; Dubayah, R.; Henebry, G.; Hunsaker, C.; Imhoff, M.; Nelson, R.; Parker, G.; Radeloff, V. Remote sensing of vegetation 3-D structure for biodiversity and habitat: Review and implications for lidar and radar spaceborne missions. J. Geophys. Res. Biogeosciences 2009, 114, 883. [Google Scholar] [CrossRef]
Vegetation Metrics | Parcel Characteristics |
---|---|
Vegetation cover by type: grass (%), shrub (%), tree (%) Median tree height (meters) | Parcel size (ha) |
Distance to city center (km) | |
Home age (years since construction) | |
Maximum tree height (meters) | Home value (2020 market price in USD) |
Total vegetation cover (%) | |
Non-vegetation cover (%) |
Name | Ecoregion | Number of Parcels | Median Parcel Size (ha) | Median Home Value (USD) | Median Distance to City Center (km) | Median Age | 2020 City Population |
---|---|---|---|---|---|---|---|
Austin | EP | 246,347 | 0.09 | 476,969 | 14.81 | 29 | 974,000 |
BP | 0.07 | 366,106 | 7.52 | 49 | |||
Buda | EP | 9429 | 0.09 | 301,380 | 11.65 | 10 | 16,000 |
BP | 0.09 | 234,320 | 10.27 | 13 | |||
Cedar Park | EP | 15,744 | 0.10 | 289,587 | 5.24 | 16 | 77,000 |
Georgetown | EP | 15,987 | 0.15 | 314,508 | 4.55 | 15 | 86,000 |
BP | 0.10 | 223,173 | 6.33 | 15 | |||
Hutto | BP | 5390 | 0.10 | 217,572 | 2.42 | 14 | 36.000 |
Kyle | EP | 18,451 | 0.07 | 236,190 | 3.18 | 11 | 57,000 |
BP | 0.07 | 216,470 | 3.18 | 15 | |||
Leander | EP | 18,167 | 0.10 | 291,416 | 5.33 | 16 | 74,000 |
Pflugerville | BP | 11,427 | 0.08 | 244,803 | 4.03 | 21 | 65,000 |
Round Rock | EP | 35,765 | 0.12 | 304,492 | 4.69 | 16 | 126,000 |
BP | 0.11 | 208,030 | 3.34 | 7 | |||
San Marcos | EP | 14,903 | 0.10 | 241,990 | 2.74 | 21 | 68,000 |
BP | 0.08 | 168,490 | 3.48 | 17 | |||
Entire MSA | EP | 391,610 | 0.10 | 307,067 | 5.23 | 17 | 2,176,000 |
BP | 0.09 | 234,871 | 3.92 | 20 |
Parcel Size | Home Age | Home Value | Distance to City Center | Median Tree Height | Grass Cover | Shrub Cover | Tree Cover | Total Vegetation | |
---|---|---|---|---|---|---|---|---|---|
Parcel size | 1 | −0.31 | 0.07 | 0.04 | −0.01 | 0.03 | 0.02 | 0.008 | 0.04 |
Home age | 1 | −0.10 | −0.01 | −0.31 | 0.31 | 0.29 | −0.2 | −0.41 | |
Home value | 1 | −0.14 | 0.14 | −0.13 | 0.03 | 0.22 | 0.16 | ||
Distance to city center | 1 | −0.10 | 0.23 | 0.04 | −0.12 | 0.03 | |||
Median tree height | 1 | −0.31 | −0.27 | 0.63 | 0.36 | ||||
Grass cover | 1 | −0.08 | −0.52 | 0.08 | |||||
Shrub cover | 1 | 0.14 | 0.51 | ||||||
Tree cover | 1 | 0.73 | |||||||
Total vegetation | 1 |
Vegetation Characteristics | Step | Parcel Characteristics | Multivariate Sequential r2 | AIC | Bivariate r |
---|---|---|---|---|---|
Tree cover(%) | 1 | Home age | 0.294 | 1129318 | −0.542 |
2 | Home value | 0.301 | 1127982 | 0.134 | |
3 | Distance to city center | 0.302 | 1127845 | 0.093 | |
4 | Parcel size | 0.302 | 1127842 | 0.013 | |
Shrub cover (%) | 1 | Home value | 0.002 | 921614 | −0.048 |
2 | Parcel size | 0.003 | 921467 | 0.032 | |
3 | Distance to city center | 0.004 | 921439 | −0.019 | |
Grass cover (%) | 1 | Home age | 0.088 | 1011918 | 0.296 |
2 | Distance to city center | 0.093 | 1011213 | −0.103 | |
3 | Home value | 0.093 | 1011097 | −0.060 | |
4 | Parcel size | 0.094 | 1010973 | 0.020 | |
Median tree height (m) | 1 | Home age | 0.114 | 382953 | −0.337 |
2 | Distance to city center | 0.119 | 382226 | 0.108 | |
3 | Home value | 0.123 | 381652 | 0.097 | |
4 | Parcel size | 0.123 | 381631 | −0.001 |
Vegetation Characteristics | Step | Parcel Characteristics | Multivariate Sequential r2 | AIC | Bivariate r |
---|---|---|---|---|---|
Tree cover (%) | 1 | Home age | 0.301 | 1039880 | −0.549 |
2 | Home value | 0.318 | 1036934 | 0.273 | |
3 | Distance to city center | 0.322 | 1036310 | −0.079 | |
4 | Parcel size | 0.323 | 1036075 | −0.036 | |
Shrub cover (%) | 1 | Home age | 0.050 | 839288 | −0.224 |
2 | Home value | 0.062 | 837778 | −0.044 | |
3 | Distance to city center | 0.063 | 837638 | 0.001 | |
4 | Parcel size | 0.063 | 837625 | −0.014 | |
Grass cover (%) | 1 | Home age | 0.089 | 966284 | 0.299 |
2 | Parcel size | 0.110 | 963491 | 0.148 | |
3 | Home value | 0.132 | 960557 | −0.218 | |
4 | Distance to city center | 0.132 | 960528 | 0.108 | |
Median tree height (m) | 1 | Home age | 0.128 | 381141 | −0.357 |
2 | Home value | 0.147 | 378484 | 0.229 | |
3 | Distance to city center | 0.153 | 377553 | −0.018 | |
4 | Parcel size | 0.154 | 377476 | −0.019 |
Variable | PC1 | PC2 |
---|---|---|
Home value | 0.17 | 0.24 |
Home age | 0.07 | 0.22 |
Parcel size | 0.04 | 0.07 |
Distance to city center | 0.09 | 0.22 |
Median tree height | 0.03 | 0.08 |
Grass % | −0.17 | −0.16 |
Shrub % | 0.24 | −0.16 |
Tree % | 0.27 | 0.06 |
Vegetation % | 0.23 | −0.20 |
Non-vegetation % | −0.23 | 0.20 |
Large Cities (>100,000) | Medium Cities (50,000–100,000) | Small Cities (<50,000) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Austin | Round Rock | Georgetown | Cedar Park | Leander | San Marcos | Pflugerville | Kyle | Hutto | Buda | ||
EP (Tree) | Parcel size | 4.6 × 10−5 | 0.001 | 0.001 | 0.001 | 5.6 × 10−4 | −3 × 10−6 | No EP | −0.235 | No EP | 1.3 × 10−5 |
Home value | 2 × 10−7 | −1 × 10−6 | −5 × 10−6 | −4 × 10−6 | −4 × 10−6 | 3 × 10−6 | 1 × 10−5 | 4.4 × 10−6 | |||
Home age | −0.611 | −0.776 | −0.566 | −0.9 | −0.900 | −0.152 | −0.10−5 | −1.114 | |||
Distance | −0.001 | 1 × 10−5 | 4 × 10−5 | −6 × 106 | −6 × 10−6 | 0.001 | −6 × 10−4 | −8 × 10−4 | |||
BP (Tree) | Parcel size | 1 × 10−4 | 1 × 10−4 | 1 × 10−4 | No BP | No BP | −2 × 10−4 | 0.003 | −1 × 10−6 | −5 × 10−5 | 1 × 10−5 |
Home value | 2 × 10−7 | 1 × 10−6 | −3 × 10−6 | 1 × 10−6 | −8 × 10−7 | 4 × 10−7 | −2 × 10−7 | 4 × 10−6 | |||
Home age | −0.002 | −0.281 | −0.164 | −0.346 | −1.117 | −0.692 | −0.153 | −1.114 | |||
Distance | 1 × 10−5 | −1 × 10−6 | −7 × 10−5 | −0.001 | 0.002 | −0.001 | 2 × 10−5 | −0.001 | |||
EP (Shrub) | Parcel size | 2 × 10−7 | 1 × 10−4 | 0.001 | 0.001 | 2 × 104 | 6 × 10−6 | No EP | 6 × 10−7 | No EP | −6 × 10−5 |
Home value | −0.477 | −1 × 10−6 | 5 × 10−7 | −2 × 10−4 | −2 × 10−4 | 4 × 10−7 | 2 × 10−6 | −8 × 10−7 | |||
Home age | 1 × 10−4 | −0.346 | −0.221 | −0.356 | −0.356 | 0.009 | −0.007 | −0.355 | |||
Distance | 1 × 10−4 | 1 × 10−5 | −1 × 10−5 | 1 × 10−5 | 1 × 10−5 | 5 × 10−5 | −4 × 10−4 | −5 × 10−5 | |||
BP (Shrub) | Parcel size | 5 × 10−5 | 1 × 10−4 | −3 × 10−5 | No BP | No BP | −1 × 10−4 | −3 × 10−4 | −3 × 10−6 | −0.001 | −6 × 10−5 |
Home value | −5 × 10−6 | −2 × 10−7 | −4 × 10−6 | −2 × 10−6 | 4 × 10−7 | −5 × 10−7 | 1 × 10−7 | −8 × 10−7 | |||
Home age | −0.088 | −0.155 | −0.161 | −0.054 | −0.256 | −0.477 | −0.289 | −0.355 | |||
Distance | −8 × 10−5 | 1 × 10−5 | 1 × 10−4 | −2 × 10−5 | 5 × 10−5 | −7 × 10−4 | −1 × 10−5 | −5 × 10−5 | |||
EP (Grass) | Parcel size | 9 × 10−5 | 0.001 | 1 × 10−5 | 0.001 | 0.001 | 5 × 10−5 | No EP | −4 × 10−7 | No EP | 8 × 10−4 |
Home value | 2 × 10−7 | −2 × 10−6 | 6 × 10−6 | −2 × 10−6 | −2 × 10−6 | 3 × 10−8 | −1 × 10−5 | −8 × 10−7 | |||
Home age | 0.179 | 0.369 | 0.06 | 0.288 | 0.289 | −0.077 | 0.046 | −0.222 | |||
Distance | 6 × 10−5 | −2 × 10−5 | −2 × 10−5 | −3 × 10−6 | −3 × 10−6 | −1 × 10−4 | 6 × 10−4 | 6 × 10−4 | |||
BP (Grass) | Parcel size | 0.001 | 1 × 10−4 | 0.001 | No BP | No BP | 6 × 10−4 | 2 × 10−4 | 1 × 10−4 | −0.001 | 0.001 |
Home value | 5 × 10−6 | −2 × 10−7 | −1 × 10−5 | 7 × 10−7 | −3 × 10−6 | 4 × 10−7 | −2 × 10−6 | −8 × 10−7 | |||
Home age | 0.075 | −0.155 | 0.101 | 0.1418 | −7.035 | −0.107 | 0.148 | −0.222 | |||
Distance | 1 × 10−4 | 1 × 10−5 | 1 × 10−4 | 0.003 | −6 × 105 | 0.002 | 0.001 | 0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jamil, R.; Julian, J.P.; Steele, M.K. Vegetation Structure and Distribution Across Scales in a Large Metropolitan Area: Case Study of Austin MSA, Texas, USA. Geographies 2025, 5, 11. https://doi.org/10.3390/geographies5010011
Jamil R, Julian JP, Steele MK. Vegetation Structure and Distribution Across Scales in a Large Metropolitan Area: Case Study of Austin MSA, Texas, USA. Geographies. 2025; 5(1):11. https://doi.org/10.3390/geographies5010011
Chicago/Turabian StyleJamil, Raihan, Jason P. Julian, and Meredith K. Steele. 2025. "Vegetation Structure and Distribution Across Scales in a Large Metropolitan Area: Case Study of Austin MSA, Texas, USA" Geographies 5, no. 1: 11. https://doi.org/10.3390/geographies5010011
APA StyleJamil, R., Julian, J. P., & Steele, M. K. (2025). Vegetation Structure and Distribution Across Scales in a Large Metropolitan Area: Case Study of Austin MSA, Texas, USA. Geographies, 5(1), 11. https://doi.org/10.3390/geographies5010011