Previous Issue
Volume 5, June
 
 

Nanomanufacturing, Volume 5, Issue 3 (September 2025) – 3 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
20 pages, 5319 KiB  
Article
Multiscale 2PP and LCD 3D Printing for High-Resolution Membrane-Integrated Microfluidic Chips
by Julia K. Hoskins, Patrick M. Pysz, Julie A. Stenken and Min Zou
Nanomanufacturing 2025, 5(3), 11; https://doi.org/10.3390/nanomanufacturing5030011 - 12 Jul 2025
Viewed by 136
Abstract
This study presents a microfluidic chip platform designed using a multiscale 3D printing strategy for fabricating microfluidic chips with integrated, high-resolution, and customizable membrane structures. By combining two-photon polymerization (2PP) for submicron membrane fabrication with liquid crystal display printing for rapid production of [...] Read more.
This study presents a microfluidic chip platform designed using a multiscale 3D printing strategy for fabricating microfluidic chips with integrated, high-resolution, and customizable membrane structures. By combining two-photon polymerization (2PP) for submicron membrane fabrication with liquid crystal display printing for rapid production of larger components, this approach addresses key challenges in membrane integration, including sealing reliability and the use of transparent materials. Compared to fully 2PP-based fabrication, the multiscale method achieved a 56-fold reduction in production time, reducing total fabrication time to approximately 7.2 h per chip and offering a highly efficient solution for integrating complex structures into fluidic chips. The fabricated chips demonstrated excellent mechanical integrity. Burst pressure testing showed that all samples withstood internal pressures averaging 1.27 ± 0.099 MPa, with some reaching up to 1.4 MPa. Flow testing from ~35 μL/min to ~345 μL/min confirmed stable operation in 75 μm square channels, with no leakage and minimal flow resistance up to ~175 μL/min without deviation from the predicted behavior in the 75 μm. Membrane-integrated chips exhibited outlet flow asymmetries greater than 10%, indicating active fluid transfer across the membrane and highlighting flow-dependent permeability. Overall, this multiscale 3D printing approach offers a scalable and versatile solution for microfluidic device manufacturing. The method’s ability to integrate precise membrane structures enable advanced functionalities such as diffusion-driven particle sorting and molecular filtration, supporting a wide range of biomedical, environmental, and industrial lab-on-a-chip applications. Full article
Show Figures

Figure 1

18 pages, 12112 KiB  
Article
MgO–C Refractories with Al2O3 and TiO2 Nano-Additives: Insights from X-Ray Micro-Computed Tomography and Conventional Techniques for Assessing Corrosion and Oxidation
by Sevastia Gkiouzel, Vasileios Ioannou, Christina Gioti, Konstantinos C. Vasilopoulos, Angelos Ntaflos, Alkiviadis S. Paipetis, Constantinos E. Salmas and Michael A. Karakassides
Nanomanufacturing 2025, 5(3), 10; https://doi.org/10.3390/nanomanufacturing5030010 - 9 Jul 2025
Viewed by 165
Abstract
MgO–C refractory materials were developed by incorporating different ratios of alumina/titania nano-additives which were synthesized chemically. Their physical and mechanical properties, oxidation resistance, slag wettability, bulk density, apparent porosity, cold crushing strength, oxidation index, and closed porosity were tested, evaluated, and compared using [...] Read more.
MgO–C refractory materials were developed by incorporating different ratios of alumina/titania nano-additives which were synthesized chemically. Their physical and mechanical properties, oxidation resistance, slag wettability, bulk density, apparent porosity, cold crushing strength, oxidation index, and closed porosity were tested, evaluated, and compared using conventional techniques as well as X-ray micro-computed tomography (µCT). This investigation indicated a slight degradation of physical properties and mechanical strengthening which was stronger for samples with increased alumina content. Oxidation and corrosion extent were tested both with X-ray tomography and conventional methods. The first method allowed for the calculation of the oxidation index, the detection of closed porosity, and an improved analysis of the internal corrosion, avoiding the sectioning of the materials. This result confirms the supremacy of the first technique. On the contrary, although conventional methods such as the Archimedes procedure cannot detect close porosity, they provide more accurate measurements of the physical properties of refractories. This study shows that conventional methods exhibit superiority in investigations of the pore structures of refractories for pore sizes in the range 1–2 μm, while the use of the μCT system is limited for pore sizes equal to or larger than 20 μm. Full article
Show Figures

Figure 1

12 pages, 5010 KiB  
Article
Same Day Microfluidics: From Design to Device in Under Three Hours
by Raymond J. Arebalo, Augustin J. Sanchez and Nathan Tompkins
Nanomanufacturing 2025, 5(3), 9; https://doi.org/10.3390/nanomanufacturing5030009 - 27 Jun 2025
Viewed by 273
Abstract
Microfluidic devices are used in numerous scientific fields and research areas, but device fabrication is still a time- and resource-intensive process largely confined to the cleanroom or a similarly well-equipped laboratory. This paper presents a method to create microfluidic devices in under three [...] Read more.
Microfluidic devices are used in numerous scientific fields and research areas, but device fabrication is still a time- and resource-intensive process largely confined to the cleanroom or a similarly well-equipped laboratory. This paper presents a method to create microfluidic devices in under three hours using the silicone polymer polydimethylsiloxane (PDMS) and a laser cut positive master using PDMS double casting without a cleanroom or other large capital equipment. This method can be utilized by an undergraduate student with minimal training in a laboratory with a modest budget. This paper presents “Same Day Microfluidics” as a fabrication method accessible to research groups not currently fabricating their own microfluidic devices and as an option for established research groups to more quickly create prototype devices. The method is described in detail with timing, materials, and technical considerations for each step and demonstrated in the context of a Y-channel coflow device. Full article
Show Figures

Figure 1

Previous Issue
Back to TopTop