Previous Issue
Volume 5, September
 
 

Nanomanufacturing, Volume 5, Issue 4 (December 2025) – 4 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
19 pages, 3064 KB  
Article
Time-Dependent Hydrothermal Synthesis of TiO2 in the Presence of Zn2+: Effects on Photoconductivity
by Tilemachos Georgakopoulos, Georgios Samourgkanidis, Nadia Todorova, Christos Trapalis and Katerina Pomoni
Nanomanufacturing 2025, 5(4), 17; https://doi.org/10.3390/nanomanufacturing5040017 - 3 Nov 2025
Abstract
Titanium dioxide nanoparticles were synthesized via hydrothermal treatment of tetrabutyl titanate in sulfuric acid, with controlled reaction times (10 h and 24 h) and zinc sulfate as a modifier. XRD confirmed exclusive formation of the anatase phase, with longer reaction times promoting crystallite [...] Read more.
Titanium dioxide nanoparticles were synthesized via hydrothermal treatment of tetrabutyl titanate in sulfuric acid, with controlled reaction times (10 h and 24 h) and zinc sulfate as a modifier. XRD confirmed exclusive formation of the anatase phase, with longer reaction times promoting crystallite growth. SEM and BET analyses showed that introducing Zn during synthesis suppressed agglomeration, decreased the particle size, and modified porosity while maintaining the mesoporous nature of all samples. UV–Vis diffuse reflectance spectroscopy showed a band gap near 3.2 eV, which was unaffected by Zn content or morphology. Photoconductivity studies showed a several-orders-of-magnitude increase in conductivity under vacuum conditions, especially in samples heat-treated for 24 h, due to the generation of oxygen vacancies and Ti3+ states that prolong the carrier lifetime. In particular, the TS24Z8 sample exhibited a photoconductivity enhancement of five orders of magnitude relative to its dark conductivity and nearly 30 times higher than that of the commercial P25 benchmark. In contrast, in air, photoconductivity remained low because of strong surface recombination with adsorbed oxygen. These results emphasize the critical influence of hydrothermal duration and zinc incorporation on the defect structure and electronic response of TiO2, offering insights for improved photocatalytic and optoelectronic applications. Full article
Show Figures

Figure 1

11 pages, 1927 KB  
Article
Sodium-Doped Carbon Dots as Fluorescent Sensor for Highly Selective Detection of TNP Explosives in the Environment
by Tianyu Gao, Xuehua Sun and Hongmei Chai
Nanomanufacturing 2025, 5(4), 16; https://doi.org/10.3390/nanomanufacturing5040016 - 23 Oct 2025
Viewed by 186
Abstract
Given the environmental hazards of 2,4,6-trinitrophenol (TNP) and the limitations of existing detection methods, sodium-doped fluorescent carbon dots (Na-CDs) were successfully synthesized via a one-step hydrothermal method using citric acid and ascorbic acid as carbon sources. Compared with undoped carbon quantum dots, Na-CDs [...] Read more.
Given the environmental hazards of 2,4,6-trinitrophenol (TNP) and the limitations of existing detection methods, sodium-doped fluorescent carbon dots (Na-CDs) were successfully synthesized via a one-step hydrothermal method using citric acid and ascorbic acid as carbon sources. Compared with undoped carbon quantum dots, Na-CDs exhibited nearly identical surface functional groups but significantly enhanced fluorescence stability and markedly improved selective responsiveness toward TNP. Accordingly, a Na-CD-based fluorescent probe was developed for the highly selective detection of TNP. Results demonstrated a good linear relationship between the relative fluorescence intensity change (F0F)/F0 and TNP concentration ranging from 7 × 10−7 to 2 × 10−5 mol/L, with a detection limit of 3.5 × 10−8 mol/L. When applied to detect TNP in local river water samples, the method achieved recoveries of 95.40–104.0%, confirming its reliability for real-world environmental sample analysis. This study develops a novel, sensitive, and highly selective approach for monitoring TNP in environmental systems. Full article
Show Figures

Figure 1

35 pages, 8289 KB  
Article
Tuning Optical and Photoelectrochemical Properties of TiO2/WOx Heterostructures by Reactive Sputtering: Thickness-Dependent Insights
by Lucas Diniz Araujo, Bianca Sartori, Matheus Damião Machado Torres, David Alexandro Graves, Benedito Donizeti Botan-Neto, Mariane Satomi Weber Murase, Nilton Francelosi Azevedo Neto, Douglas Marcel Gonçalves Leite, Rodrigo Sávio Pessoa, Argemiro Soares da Silva Sobrinho and André Luis Jesus Pereira
Nanomanufacturing 2025, 5(4), 15; https://doi.org/10.3390/nanomanufacturing5040015 - 15 Oct 2025
Viewed by 287
Abstract
Metal-oxide heterostructures represent an effective strategy to overcome the limitations of pristine TiO2, including its ultraviolet-only light absorption and rapid electron–hole recombination, which hinder its performance in solar-driven applications. Among various configurations, coupling TiO2 with tungsten oxide (WOx) [...] Read more.
Metal-oxide heterostructures represent an effective strategy to overcome the limitations of pristine TiO2, including its ultraviolet-only light absorption and rapid electron–hole recombination, which hinder its performance in solar-driven applications. Among various configurations, coupling TiO2 with tungsten oxide (WOx) forms a favorable type-II band alignment that enhances charge separation. However, a comprehensive understanding of how WOx overlayer thickness affects the optical and photoelectrochemical (PEC) behavior of device-grade thin films remains limited. In this study, bilayer TiO2/WOx heterostructures were fabricated via reactive DC magnetron sputtering, with controlled variation in WOx thickness to systematically investigate its influence on the structural, optical, and PEC properties. Adjusting the WOx deposition time enabled precise tuning of light absorption, interfacial charge transfer, and donor density, resulting in markedly distinct PEC responses. The heterostructure obtained with 30 min of WOx deposition demonstrated a significant enhancement in photocurrent density under AM 1.5G illumination, along with reduced charge-transfer resistance and improved capacitive behavior, indicating efficient charge separation and enhanced charge storage at the electrode–electrolyte interface. These findings underscore the potential of sputtered TiO2/WOx bilayers as advanced photoanodes for solar-driven hydrogen generation and light-assisted energy storage applications. Full article
Show Figures

Graphical abstract

24 pages, 4218 KB  
Article
Friction and Wear Performance of Carbon Nanotubes Reinforced Co-Based Atmospheric Plasma-Sprayed Coatings
by Ilias Georgiopoulos, Dimitra Giasafaki, Dia Andreouli and Chara I. Sarafoglou
Nanomanufacturing 2025, 5(4), 14; https://doi.org/10.3390/nanomanufacturing5040014 - 24 Sep 2025
Viewed by 388
Abstract
Atmospheric plasma spraying was used to create composite coatings employing mixed alloy matrices supplemented with carbon-based solid lubricants as feedstock materials. The current study’s goal was to examine the tribological properties of these coatings and explore the potential benefits of using CNTs as [...] Read more.
Atmospheric plasma spraying was used to create composite coatings employing mixed alloy matrices supplemented with carbon-based solid lubricants as feedstock materials. The current study’s goal was to examine the tribological properties of these coatings and explore the potential benefits of using CNTs as a nano-additive to minimize wear and friction while enhancing lubrication conditions in tribosystems such as piston ring–cylinder liner systems. Pin-on-disk measurements are used to correlate the chemical composition of feedstock materials with the friction coefficient and wear rate during coating operation. The enhanced behavior of the produced coatings is investigated. The anti-wear performance of Co-based cermet and metal alloys coatings, as well as the enhanced lubrication conditions during operation, are shown. In-depth discussion is provided regarding how the features of the feedstock powder affect the quality and performance of the produced coatings. The results showed that coatings based on the CoMo alloy exhibited an increase in wear due to CNT agglomeration. In contrast, CNT addition led to an improvement in bonding strength by up to 33%, a reduction in wear rate by up to 80%, and a decrease in the coefficient of friction from approximately 0.70 to 0.35 in CoNi cermet coatings. These findings demonstrate the role of CNTs in coating performance for demanding tribological applications. Full article
Show Figures

Figure 1

Previous Issue
Back to TopTop