An Overview of Silver Nanowire Polyol Synthesis Using Millifluidic Flow Reactors for Continuous Transparent Conductive Film Manufacturing by Direct Ink Writing
Abstract
:1. Introduction
2. Millifluidic Flow Reactors
2.1. Classification and Configuration
2.2. Reaction Environment Characteristics
2.3. Flow Behavior and Characteristics
2.4. Transport and Kinetic Effects
3. Polyol AgNW Syntheses Using MFRs
3.1. AgNW Properties
3.2. Polyol AgNW Formation Mechanism
3.3. Advances Using MFRs for Polyol AgNW Synthesis
4. Polyol-Synthesized AgNW-Based TCF Applications
5. Conclusions and Future Directions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, S.; Zhao, W.; Zeng, J.; He, Z.; Wang, X.; Zhu, Z.; Hu, R.; Liu, C.; Wang, Q. Wearable non-invasive glucose sensors based on metallic nanomaterials. Mater. Today Bio 2023, 20, 100638. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.; Kim, J.P.; Kim, W.H.; Song, Y.H.; Kim, S.; Jeong, H.-J. Large-scale transfer of Ag nanowires from PET to PC film using a roll-to-roll UV lamination process for a capacitive touch sensor. RSC Adv. 2023, 13, 1551–1557. [Google Scholar] [CrossRef] [PubMed]
- Xie, C.; Liu, Y.; Wei, W.; Zhou, Y. Large-Area Flexible Organic Solar Cells with a Robust Silver Nanowire-Polymer Composite as Transparent Top Electrode. Adv. Funct. Mater. 2023, 33, 2210675. [Google Scholar] [CrossRef]
- Wahab, O.J.; Kang, M.; Meloni, G.N.; Daviddi, E.; Unwin, P.R. Nanoscale Visualization of Electrochemical Activity at Indium Tin Oxide Electrodes. Anal. Chem. 2022, 94, 4729–4736. [Google Scholar] [CrossRef]
- Zhao, B.; Nisula, M.; Dhara, A.; Henderick, L.; Mattelaer, F.; Dendooven, J.; Detavernier, C. Atomic Layer Deposition of Indium-Tin-Oxide as Multifunctional Coatings on V2O5 Thin-Film Model Electrode for Lithium-Ion Batteries. Adv. Mater. Interfaces 2020, 7, 2001022. [Google Scholar] [CrossRef]
- Choi, C.; Schlenker, E.; Ha, H.; Cheong, J.Y.; Hwang, B. Versatile Applications of Silver Nanowire-Based Electrodes and Their Impacts. Micromachines 2023, 14, 562. [Google Scholar] [CrossRef]
- Sharma, N.; Koshy, A.M.; Kandregula, G.R.; Ramanujam, K.; Ray, D.; Swaminathan, P. Printed Silver Nanowire-PEDOT:PSS Composite Electrodes for Flexible Transparent Microsupercapacitor Applications. ACS Appl. Energy Mater. 2024, 7, 363–372. [Google Scholar] [CrossRef]
- Zhang, H.-W.; Bi, Y.-G.; Shan, D.-M.; Chen, Z.-Y.; Wang, Y.-F.; Sun, H.-B.; Feng, J. Highly flexible organo-metal halide perovskite solar cells based on silver nanowire–polymer hybrid electrodes. Nanoscale 2023, 15, 5429–5436. [Google Scholar] [CrossRef]
- Lee, M.; Piper, R.T.; Bhandari, B.; Hsu, J.W.P. Multiobjective Optimization of Silver-Nanowire Deposition for Flexible Transparent Conducting Electrodes. ACS Appl. Nano Mater. 2023, 6, 17364–17368. [Google Scholar] [CrossRef]
- You, W.; Liao, B.; Wan, S.; Guo, X. Research progress on the stability of transparent conductive films for silver nanowires. Microelectron. Reliab. 2024, 156, 115394. [Google Scholar] [CrossRef]
- Fu, D.; Yang, R.; Wang, Y.; Wang, R.; Hua, F. Silver Nanowire Synthesis and Applications in Composites: Progress and Prospects. Adv. Mater. Technol. 2022, 7, 2200027. [Google Scholar] [CrossRef]
- Zhang, P.; Wyman, I.; Hu, J.; Lin, S.; Zhong, Z.; Tu, Y.; Huang, Z.; Wei, Y. Silver nanowires: Synthesis technologies, growth mechanism and multifunctional applications. Mater. Sci. Eng. B 2017, 223, 1–23. [Google Scholar] [CrossRef]
- BioRender. Available online: https://www.biorender.com/ (accessed on 1 September 2024).
- Yu, J.; Yang, L.; Jiang, J.; Dong, X.; Cui, Z.; Wang, C.; Lu, Z. Scalable Production of High-Quality Silver Nanowires via Continuous-Flow Droplet Synthesis. Nanomaterials 2022, 12, 1018. [Google Scholar] [CrossRef] [PubMed]
- Roberts, E.J.; Karadaghi, L.R.; Wang, L.; Malmstadt, N.; Brutchey, R.L. Continuous Flow Methods of Fabricating Catalytically Active Metal Nanoparticles. ACS Appl. Mater. Interfaces 2019, 11, 27479–27502. [Google Scholar] [CrossRef] [PubMed]
- Pussepitiyalage, V.B.; Hemmati, S. Sustainable, Green, and Continuous Synthesis of Fivefold Palladium Nanorods Using l-Ascorbic Acid in a Segmented Millifluidic Flow Reactor. Langmuir 2022, 38, 4200–4212. [Google Scholar] [CrossRef]
- Neyt, N.C.; Riley, D.L. Application of reactor engineering concepts in continuous flow chemistry: A review. React. Chem. Eng. 2021, 6, 1295–1326. [Google Scholar] [CrossRef]
- Hu, C. Reactor design and selection for effective continuous manufacturing of pharmaceuticals. J. Flow Chem. 2021, 11, 243–263. [Google Scholar] [CrossRef]
- Lin, X.Z.; Terepka, A.D.; Yang, H. Synthesis of Silver Nanoparticles in a Continuous Flow Tubular Microreactor. Nano Lett. 2004, 4, 2227–2232. [Google Scholar] [CrossRef]
- Gottesman, R.; Tangy, A.; Oussadon, I.; Zitoun, D. Silver nanowires and nanoparticles from a millifluidic reactor: Application to metal assisted silicon etching. New J. Chem. 2012, 36, 2456–2459. [Google Scholar] [CrossRef]
- Espinosa, N.; Søndergaard, R.R.; Jørgensen, M.; Krebs, F.C. Flow Synthesis of Silver Nanowires for Semitransparent Solar Cell Electrodes: A Life Cycle Perspective. ChemSusChem 2016, 9, 893–899. [Google Scholar] [CrossRef]
- Hemmati, S.; Barkey, D.P.; Eggleston, L.; Zukas, B.; Gupta, N.; Harris, M. Silver Nanowire Synthesis in a Continuous Millifluidic Reactor. ECS J. Solid State Sci. Technol. 2017, 6, P144–P149. [Google Scholar] [CrossRef]
- Kinhal, K.V.; Bhatt, N.; Subramaniam, P. Transport and Kinetic Effects on the Morphology of Silver Nanoparticles in a Millifluidic System. Ind. Eng. Chem. Res. 2019, 58, 5820–5829. [Google Scholar] [CrossRef]
- Kaabipour, S.; Hemmati, S. Continuous, green, and room-temperature synthesis of silver nanowires in a helically-coiled millifluidic reactor. Colloids Surf. A Physicochem. Eng. Asp. 2023, 659, 130806. [Google Scholar] [CrossRef]
- Monbaliu, J.-C.M.; Legros, J. Will the next generation of chemical plants be in miniaturized flow reactors? Lab A Chip 2023, 23, 1349–1357. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, X.; Shan, J.; Liu, C.; Guo, X.; Zhao, X.; Yang, H. Facile fabrication of large-scale silver nanowire transparent conductive films by screen printing. Mater. Res. Express 2022, 9, 66401. [Google Scholar] [CrossRef]
- Yang, J.; Zeng, W.; Li, Y.; Yi, Z.; Zhou, G. Fabrication of Screen Printing-Based AgNWs Flexible Transparent Conductive Film with High Stability. Micromachines 2020, 11, 1027. [Google Scholar] [CrossRef]
- Li, D.; Liu, X.; Chen, X.; Lai, W.; Huang, W. A Simple Strategy towards Highly Conductive Silver-Nanowire Inks for Screen-Printed Flexible Transparent Conductive Films and Wearable Energy-Storage Devices. Adv. Mater. Technol. 2019, 4, 1900196. [Google Scholar] [CrossRef]
- Al-Milaji, K.N.; Huang, Q.; Li, Z.; Ng, T.N.; Zhao, H. Direct Embedment and Alignment of Silver Nanowires by Inkjet Printing for Stretchable Conductors. ACS Appl. Electron. Mater. 2020, 2, 3289–3298. [Google Scholar] [CrossRef]
- Patil, P.; Patil, S.; Kate, P.; Kulkarni, A.A. Inkjet printing of silver nanowires on flexible surfaces and methodologies to improve the conductivity and stability of the printed patterns. Nanoscale Adv. 2021, 3, 240–248. [Google Scholar] [CrossRef]
- Park, J.; Kim, G.; Lee, B.; Lee, S.; Won, P.; Yoon, H.; Cho, H.; Ko, S.H.; Hong, Y. Highly Customizable Transparent Silver Nanowire Patterning via Inkjet-Printed Conductive Polymer Templates Formed on Various Surfaces. Adv. Mater. Technol. 2020, 5, 2000042. [Google Scholar] [CrossRef]
- Kong, X.; Chen, H.; Li, H.; Yue, L.; Gong, M.; Lin, X.; Zhang, M.; Zhang, L.; Wang, D. Hierarchically Ordered Grid-Type Silver Nanowire Microelectrodes via Direct Ink Writing. ACS Appl. Nano Mater. 2024, 7, 14898–14905. [Google Scholar] [CrossRef]
- Yang, Y.; Li, W.; Narayanan, S.S.; Wang, X.; Zhao, H. Advanced Printing Transfer of Assembled Silver Nanowire Network into Elastomer for Constructing Stretchable Conductors. Adv. Eng. Mater. 2023, 25, 2300675. [Google Scholar] [CrossRef]
- Jiang, P.-Z.; Deng, Z.; Min, P.; Ye, L.; Qi, C.-Z.; Zhao, H.-Y.; Liu, J.; Zhang, H.-B.; Yu, Z.-Z. Direct ink writing of multifunctional gratings with gel-like MXene/norepinephrine ink for dynamic electromagnetic interference shielding and patterned Joule heating. Nano Res. 2024, 17, 1585–1594. [Google Scholar] [CrossRef]
- Dimngaihvungi, E.; Singh, M.; Pani, B.; Singh, A.K. Silver and copper nanowire-based nanocomposite for transparent electrodes: Deposition methods and applications in solar cells. Compos. Interfaces 2023, 30, 1449–1481. [Google Scholar] [CrossRef]
- Xu, X.; Xue, P.; Gao, M.; Li, Y.; Xu, Z.; Wei, Y.; Zhang, Z.; Liu, Y.; Wang, L.; Liu, H.; et al. Assembled one-dimensional nanowires for flexible electronic devices via printing and coating: Techniques, applications, and perspectives. Adv. Colloid Interface Sci. 2023, 321, 102987. [Google Scholar] [CrossRef]
- Kong, X.; Li, H.; Wang, J.; Wang, Y.; Zhang, L.; Gong, M.; Lin, X.; Wang, D. Direct Writing of Silver Nanowire Patterns with Line Width down to 50 μm and Ultrahigh Conductivity. ACS Appl. Mater. Interfaces 2023, 15, 9906–9915. [Google Scholar] [CrossRef]
- Lu, H.-C.; Liao, Y.-C. Direct Printed Silver Nanowire Strain Sensor for Early Extravasation Detection. Nanomaterials 2021, 11, 2583. [Google Scholar] [CrossRef]
- Hartman, R.L.; McMullen, J.P.; Jensen, K.F. Deciding Whether to Go with the Flow: Evaluating the Merits of Flow Reactors for Synthesis. Angew. Chem. Int. Ed. Engl. 2011, 50, 7502–7519. [Google Scholar] [CrossRef]
- Wu, K.-J.; Torrente-Murciano, L. Continuous synthesis of tuneable sized silver nanoparticles via a tandem seed-mediated method in coiled flow inverter reactors. React. Chem. Eng. 2018, 3, 267–276. [Google Scholar] [CrossRef]
- Fogler, H.S. Essential of Chemical Reaction Engineering; Prentice Hall: Saddle River, NJ, USA, 2013. [Google Scholar]
- Ha, H.; Amicucci, C.; Matteini, P.; Hwang, B. Mini review of synthesis strategies of silver nanowires and their applications. Colloid Interface Sci. Commun. 2022, 50, 100663. [Google Scholar] [CrossRef]
- Coskun, S.; Aksoy, B.; Unalan, H.E. Polyol Synthesis of Silver Nanowires: An Extensive Parametric Study. Cryst. Growth Des. 2011, 11, 4963–4969. [Google Scholar] [CrossRef]
- Williams, D.F.; Rahimi, N.; Smay, J.E.; Hemmati, S. Optimizing silver nanowire synthesis: Machine learning improves and predicts yield for a polyol, millifluidic flow reactor. Appl. Nanosci. 2023, 13, 6539–6552. [Google Scholar] [CrossRef]
- Lau, K.S.; Chin, S.X.; Tan, S.T.; Lim, F.S.; Chang, W.S.; Yap, C.C.; Jumali, M.H.H.; Zakaria, S.; Chook, S.W.; Chia, C.H. Silver nanowires as flexible transparent electrode: Role of PVP chain length. J. Alloy. Compd. 2019, 803, 165–171. [Google Scholar] [CrossRef]
- Williams, D.F.; Smay, J.E.; Hemmati, S. Kinetic analysis of silver nanowire synthesis: Polyol batch and continuous millifluidic methods. Nanoscale 2025, 17, 7114–7127. [Google Scholar] [CrossRef] [PubMed]
- Kaabipour, S.; Neal, F.; Hemmati, S. High-Yield, Environmentally-Friendly, and Sustainable Synthesis of Silver Nanowires Using Tannic Acid and Their Application in Conductive Ink Preparation: Economic Analysis and Rheological Investigation. Mater. Interfaces 2025, 2, 32–45. [Google Scholar] [CrossRef]
- Bin, P.S.; Geng, W.H.; Wang, T.; Zhu, Q.; Li, M.; Liu, X.L.; Qian, P.F.; Bao, Z.L.; Yang, Z.X.; Geng, H.Z. Aluminum-Doped ZnO Weld Silver Nanowires-Based High Transmittance, Low Sheet Resistance, and Tough Composite Transparent Conductive Films. Adv. Eng. Mater. 2023, 25, 2201444. [Google Scholar] [CrossRef]
- Yao, W.; Yuxin, T.; Meng, L.; Hanming, D.; Demei, K.; Dezeng, L. Sandwich structure silver nanowires transparent conductive films with improved photoelectronic performance. J. Mater. Sci. 2024, 59, 435–446. [Google Scholar] [CrossRef]
- Song, J.H.; Kim, Y.; Seol, J.; Park, C.; Myoung, J.; Jeong, U. Enhanced Chemical Stability of Ag Nanowires by Slight Surface Modification with Pd. Adv. Mater. Interfaces 2018, 5, 1800250. [Google Scholar] [CrossRef]
Dimensionless Number | Significance in MFRs | Nominal Values |
---|---|---|
Re | Determines flow characteristics in the system | Laminar Re < 2100 |
De | Quantifies Lagrangian turbulences or Dean vortices, which enhance mixing | A relatively high De number implies enhanced mixing in a system. |
He | Related to the De number but accounts for the change in height of the tubing configuration | A relatively high He number implies enhanced mixing in a system. |
Da | Relates reaction rate to mass transfer | Da > 1 indicates there is insufficient mixing in the system and is kinetically limited. |
Da < 1 means the system is well mixed. | ||
Pe | Determines transport phenomena and the orientation of the wires | A relatively large Pe number suggests that convective heat transfer dominates in the system. |
Pr | Quantify momentum and heat transfer | Higher Nu numbers imply better heat transfer capabilities of the system. |
Nu |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Williams, D.F.; Hemmati, S. An Overview of Silver Nanowire Polyol Synthesis Using Millifluidic Flow Reactors for Continuous Transparent Conductive Film Manufacturing by Direct Ink Writing. Nanomanufacturing 2025, 5, 7. https://doi.org/10.3390/nanomanufacturing5020007
Williams DF, Hemmati S. An Overview of Silver Nanowire Polyol Synthesis Using Millifluidic Flow Reactors for Continuous Transparent Conductive Film Manufacturing by Direct Ink Writing. Nanomanufacturing. 2025; 5(2):7. https://doi.org/10.3390/nanomanufacturing5020007
Chicago/Turabian StyleWilliams, Destiny F., and Shohreh Hemmati. 2025. "An Overview of Silver Nanowire Polyol Synthesis Using Millifluidic Flow Reactors for Continuous Transparent Conductive Film Manufacturing by Direct Ink Writing" Nanomanufacturing 5, no. 2: 7. https://doi.org/10.3390/nanomanufacturing5020007
APA StyleWilliams, D. F., & Hemmati, S. (2025). An Overview of Silver Nanowire Polyol Synthesis Using Millifluidic Flow Reactors for Continuous Transparent Conductive Film Manufacturing by Direct Ink Writing. Nanomanufacturing, 5(2), 7. https://doi.org/10.3390/nanomanufacturing5020007