Environmental Management of Dredging Activities: Monitoring System and an Empirical Approach to Estimating Values of Background and Limit Turbidity †
Abstract
:1. Introduction
2. Study Site and Description of the Monitoring Meteo-Oceanographic Station
- -
- maintenance and calibration of instruments twice a year in specialized laboratories;
- -
- visual inspection of the time series (e.g., time-series plot, current vector scatter plot, progressive vector diagram);
- -
- combined screening of related parameters such as current speed and current direction or salinity and temperature to identify spurious values;
- -
- flagging of spikes in the data;
- -
- flagging of suspicious data or correcting data after consultation with the data supplier;
- -
- checking against other data collected on nearby moorings or measured during monitoring survey using two vessel-mounted acoustic Doppler current profilers (VM-ADCPs).
3. Analysis of Monitored Data
3.1. Winds, Waves, and Currents
3.2. Turbidity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- De Serio, F.; Ben Meftah, M.; Mossa, M. Monitoring and modelling of coastal currents and wastewater discharge: A case study. Geo-Eco-Mar. 2014, 20, 1–15. [Google Scholar]
- De Serio, F.; Armenio, E.; Ben Meftah, M.; Capasso, G.; Corbelli, V.; De Padova, D.; De Pascalis, F.; Di Bernardino, A.; Leuzzi, G.; Monti, P.; et al. Detecting sensitive areas in confined shallow basins. Environ. Model. Softw. 2020, 126, 104659. [Google Scholar] [CrossRef]
- De Serio, F.; Mossa, M. Environmental monitoring in the Mar Grande basin (Ionian Sea, Southern Italy). J. Environ. Sci. Poll. Res. 2016, 23, 12662–12674. [Google Scholar] [CrossRef] [PubMed]
- De Serio, F.; Mossa, M. Assessment of hydrodynamics, biochemical parameters and eddy diffusivity in a semi-enclosed Ionian basin. Deep. -Sea Research. Part 2. Top. Stud. Oceanogr. 2016, 133, 176–185. [Google Scholar] [CrossRef]
- De Serio, F.; Mossa, M. Meteo and Hydrodynamic Measurements to Detect Physical Processes in Confined Shallow Seas. Sensors 2018, 18, 280. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Armenio, E.; Ben Meftah, M.; Bruno, M.F.; De Padova, D.; De Pascalis, F.; De Serio, F.; Di Bernardino, A.; Mossa, M.; Leuzzi, G.; Monti, P. Semi enclosed basin monitoring and analysis of meteo, wave, tide and current data. In Proceedings of the IEEE Conference on Environmental. Energy and Structural Monitoring Systems, Bari, Italy, 13–14 June 2016. [Google Scholar]
- Armenio, E.; De Serio, F.; Mossa, M. Analysis of data characterizing tide and current fluxes in coastal basins. Hydrol. Earth Syst. Sci. 2017, 21, 3441–3454. [Google Scholar] [CrossRef] [Green Version]
- Armenio, E.; De Serio, F.; Mossa, M.; De Padova, D. Monitoring system for the sea: Analysis of meteo, wave and current data. In Proceedings of the IMEKO TC19 Workshop on Metrology for the Sea, MetroSea: Learning to Measure Sea Health Parameters, Naples, Italy, 11–13 October 2017; pp. 143–148. [Google Scholar]
- Armenio, E.; Ben Meftah, M.; De Padova, D.; De Serio, F.; Mossa, M. Onitoring System in Mar Grande Basin (Ionian Sea). In Proceedings of the IEEE International Workshop on Metrology for the Sea; Learning to Measure Sea Health Parameters (Metrosea), Bari, Italy, 8–10 October 2018; pp. 104–109. [Google Scholar] [CrossRef]
- Armenio, E.; Ben Meftah, M.; De Padova, D.; De Serio, F.; Mossa, M. Monitoring Systems and Numerical Models to Study Coastal Sites. Sensors 2019, 19, 1552. [Google Scholar] [CrossRef] [Green Version]
- De Padova, D.; Mossa, M.; Adamo, M.; De Carolis, G.; Pasquariello, G. Synergistic use of an oil drift model and remote sensing observations for oil spill monitoring. Environ. Sci. Pollut. Res. 2017, 24, 5530–5543. [Google Scholar] [CrossRef]
- De Padova, D.; De Serio, F.; Mossa, M.; Armenio, E. Investigation of the current circulation offshore Taranto by using field measurements and numerical model. In Proceedings of the 2017 IEEE International Instrumentation and Measurement Technology Conference, Turin, Italy, 22–25 May 2017. [Google Scholar] [CrossRef]
- De Carolis, G.; Adamo, M.; Pasquariello, G.; De Padova, D.; Mossa, M. Quantitative characterization of marine oil slick by satellite near-infrared imagery and oil drift modelling: The Fun Shai Hai case study. Int. J. Remote Sens. 2013, 34, 1838–1854. [Google Scholar] [CrossRef]
- Chimienti, G.; De Padova, D.; Mossa, M.; Mastrototaro, F. A mesophotic black coral forest in the Adriatic Sea. Sci. Rep. 2020, 10, 8504. [Google Scholar] [CrossRef]
- Chimienti, G.; De Padova, D.; Adamo, M.; Mossa, M.; Bottalico, A.; Lisco, A.; Ungaro, N.; Mastrototaro, F. Effects of global warming on Mediterranean coral forests. Sci. Rep. 2021, 11, 20703. [Google Scholar] [CrossRef] [PubMed]
- Wetzel, R.G. Limnology; CBS College Publishing: Philadelphia, PA, USA, 1983. [Google Scholar]
- Wilber, C.G. Turbidity in the Aquatic Environment: An Environmental Factor in Fresh and Oceanic Waters; Charles Thomas Publications: Springfield, IL, USA, 1983. [Google Scholar]
- Newman, B.; Jones, C.; Omarjee, A.; Ngcingwana, N.; Parsons, G. Laboratory-Produced Turbidity-Total Suspended Solids Concentration Relationship for Dredging Compliance Monitoring in the Ngqura Area of Algoa Bay; CSIR Report CSIR/NRE/ECOS/ER/2013/0059/B; Council for Scientific and Industrial Research, Coastal Systems Res. Group: Pretoria, South Africa, 2013. [Google Scholar]
- Mossa, M. Experimental study on the interaction of non-buoyant jets and waves. J. Hydraul. Res. 2004, 42, 13–28. [Google Scholar] [CrossRef]
- Mossa, M. Behavior of non-buoyant jets in a wave environment. J. Hydraul. Eng. 2004, 130, 704–717. [Google Scholar] [CrossRef]
- Mossa, M. Field measurements and monitoring of wastewater discharge in sea water. Estuar. Coast. Shelf Sci. 2006, 68, 509–514. [Google Scholar] [CrossRef]
- Mossa, M.; Davies, P.A. Some aspects of turbulent mixing of jets in the marine environment. Water 2018, 10, 522. [Google Scholar] [CrossRef] [Green Version]
- De Padova, D.; Mossa, M.; Sibilla, S. Numerical investigation of the behaviour of jets in a wave environment. J. Hydraul. Res. 2019, 58, 618–627. [Google Scholar] [CrossRef]
- De Padova, D.; Mossa, M.; Sibilla, S. Characteristics of nonbuoyant jets in a wave environment investigated numerically. Environ. Fluid Mech. 2020, 20, 189–202. [Google Scholar] [CrossRef]
- Barile, S.; De Padova, D.; Mossa, M.; Sibilla, S. Theoretical analysis and numerical simulations of turbulent jets in a wave environment. Phys. Fluids 2020, 32, 035105. [Google Scholar] [CrossRef]
- Mega, M.; Attolico, A.; Armenio, E. Application of an Environmental Monitoring Strategy in the Port of Bari. In Sustainable Development of Sea-Corridors and Coastal Waters; Stylios, C., Floqi, T., Marinski, J., Damiani, L., Eds.; Springer: Cham, Switzerland, 2015. [Google Scholar]
- Wooldridge, C.F.; McMullen, C.; Howe, V. Environmental management of ports and harbors implementation of policy through scientific monitoring. Mar. Policy J. 1999, 23, 413–425. [Google Scholar] [CrossRef]
- Darbra, R.M.; Ronza, A.; Casal, J.; Stojanovic, T.; Wooldridge, C. A new methodology to assess environmental management in sea ports. Mar. Pollut. Bull. 2004, 48, 420–428. [Google Scholar] [CrossRef]
- Corsini, S.; Onorati, F.; Pellegrini, F.; De Angelis, P.; Avancini, M. Manuale per la Movimen-Tazione di Sedimenti Marini. 2007. Available online: http://www.minambiente.it (accessed on 20 June 2006).
Station A | Station B | ||
X | |||
Wave | Progressive data number Date (year/month/day/hour/minute) Position (Lat, lon) |
| |
Station A | Station B | ||
X | X | ||
Current | Progressive data number Date (year/month/day/hour/minute) Position (Lat, lon) |
| |
Station A | Station B | ||
X | X | ||
Temperature | Progressive data number Date (year/month/day/hour/minute) Position (Lat, lon) |
| |
Station C | |||
X | |||
Meteo | Data number Date (year/month/day/hour/minute) Position (Lat, lon) |
| |
Station D | |||
Water quality | Progressive data number Date (year/month/day/hour/minute) Position (Lat, lon) | X | |
|
February–April 2019 | |||
---|---|---|---|
Max [NTU] | Mean [NTU] | Median [NTU] | Stand.dev [NTU] |
18.17 | 2.13 | 1.4 | 2.08 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Padova, D.; Attolico, A.; Ungaro, N.; Mossa, M. Environmental Management of Dredging Activities: Monitoring System and an Empirical Approach to Estimating Values of Background and Limit Turbidity. Environ. Sci. Proc. 2022, 21, 12. https://doi.org/10.3390/environsciproc2022021012
De Padova D, Attolico A, Ungaro N, Mossa M. Environmental Management of Dredging Activities: Monitoring System and an Empirical Approach to Estimating Values of Background and Limit Turbidity. Environmental Sciences Proceedings. 2022; 21(1):12. https://doi.org/10.3390/environsciproc2022021012
Chicago/Turabian StyleDe Padova, Diana, Annunziata Attolico, Nicola Ungaro, and Michele Mossa. 2022. "Environmental Management of Dredging Activities: Monitoring System and an Empirical Approach to Estimating Values of Background and Limit Turbidity" Environmental Sciences Proceedings 21, no. 1: 12. https://doi.org/10.3390/environsciproc2022021012
APA StyleDe Padova, D., Attolico, A., Ungaro, N., & Mossa, M. (2022). Environmental Management of Dredging Activities: Monitoring System and an Empirical Approach to Estimating Values of Background and Limit Turbidity. Environmental Sciences Proceedings, 21(1), 12. https://doi.org/10.3390/environsciproc2022021012