Smallholder Farmers’ Perceptions of Climate Variability and Land-Use Changes in Semiarid Gwayi Catchment Agroecosystems
Abstract
:1. Introduction
1.1. Background of the Study
1.2. Conceptual Framework of the Study
2. Materials and Methods
2.1. Description of the Study Area
2.2. Sampling
Sub Catchment | Selected District | Households (Preliminary Census Report 2022) | Calculated HH Sample | Completed HH Questionnaires | ||
---|---|---|---|---|---|---|
Total Number of Wards | Wards | Households (HH) | ||||
Nata | Tsholotsho | 26,668 | 22 | 3 | 98 | 98 |
Shangani | Lupane | 23,028 | 28 | 3 | 97 | 97 |
Upper Gwayi | Umguza | 28,358 | 19 | 2 | 97 | 96 |
Mbembesi | Bubi | 18,252 | 23 | 3 | 97 | 96 |
Lower Gwayi | Binga | 39,495 | 25 | 3 | 98 | 96 |
Total | 135,801 | 117 | 14 | 487 | 483 |
2.3. Data Collection
2.4. Data Analysis
3. Results
3.1. Farmer Demographics and Agricultural Profile
3.2. Farmer Observations of Climate Change and LULCC
3.2.1. Droughts and Dry Spells
3.2.2. Perceived Changes in Rainfall Patterns and Temperature over the Past Decade (2014–2024)
“We used to plant in October following consistent seasonal patterns. Now the rains are so unreliable that planting often gets delayed until December or even January, leaving our crops vulnerable to early dry spells”.(Male farmer, age 54, Tsholotsho)
“Although we recognize drought-resistant crops like millet and sorghum perform better, accessing quality seeds remains problematic. When available, their cost is prohibitive for most households in our community”.(Female farmer, age 41, Umguza)
“Our traditional planting recommendations have become obsolete. With such unpredictable onset of rains, we increasingly rely on short-term weather forecasts rather than historical patterns”.(Agricultural extension officer, 8 years of service, Gwayi catchment)
“The situation grows dire each season—our grazing lands have become barren, and traditional water sources have disappeared. Last year alone, I lost seven head of cattle to drought-related conditions”.(Pastoralist, age 62, Binga)
3.2.3. Reported Changes in Landscape and Land-Use Practices
3.3. Farmer Perceptions of the Impacts of Climate Variability and Land-Use Changes
3.3.1. Impact of LULCC on Agricultural Activities and Agroecosystems
3.3.2. Reported Impacts of Climate Variability on Crop Yields and Livestock Health
- Dietary adjustments
“During the last drought, we only ate one meal a day. We collected wild fruits and vegetables to supplement”(focus group discussion, Lupane);
- 2.
- Livelihood diversification
“We try to find work outside the farm—building houses or road work—but jobs are hard to come by. When we find work, the pay is too little”(individual interview, Binga);
- 3.
- Social knowledge networks
“We learn a lot from each other. When one farmer tries a new drought-resistant crop, we all discuss the results. Sharing information is key to surviving these hard times”(focus group discussion, Umguza).
“These coping mechanisms are like using a bucket to stop a flooding river. We’re worried about the future—our children won’t survive on wild foods alone. We need real solutions like irrigation and drought-resistant seeds”(key informant interview, Binga).
3.3.3. Synergistic Impacts of Climate and Land Use on Farming Systems and Livelihoods in the Gwayi Catchment
4. Discussion
4.1. Perceptions of Climate Variability
4.2. Observed Land-Use and Landscape Changes
4.3. Impacts on Agriculture and Livelihoods
4.4. Farmer Adaptation Strategies and Resilience Gaps
4.5. Limitations of the Study
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ayanlade, A.; Oluwaranti, A.; Ayanlade, O.S.; Borderon, M. Extreme climate events in sub-Saharan Africa: A call for improving agricultural technology transfer to enhance adaptive capacity Extreme climate events in sub-Saharan Africa: A call for improving agricultural technology transfer to enhance adaptive capa. Clim. Serv. 2022, 27, 100311. [Google Scholar] [CrossRef]
- Cui, R.Y.; Waldhoff, S.; Clarke, L.; Hultman, N.; Patwardhan, A.; Gilmore, E.A. Evaluating the regional risks to food availability and access from land-based climate policies in an integrated assessment model. Environ. Syst. Decis. 2022, 42, 547–555. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Kori, D.S.; Sibanda, M.; Nhundu, K. An Analysis of the Differences in Vulnerability to Climate Change: A Review of Rural and Urban Areas in South Africa. Climate 2022, 10, 118. [Google Scholar] [CrossRef]
- Assede, E.S.P.; Orou, H.; Biaou, S.S.H.; Geldenhuys, C.J.; Ahononga, F.C.; Chirwa, P.W. Understanding drivers of land use and land cover change in Africa: A review. Curr. Landsc. Ecol. Rep. 2023, 8, 62–72. [Google Scholar] [CrossRef]
- Rezaei, E.E.; Webber, H.; Asseng, S.; Boote, K.; Durand, J.L.; Ewert, F.; Martre, P.; MacCarthy, D.S. Climate change impacts on crop yields. Nat. Rev. Earth Environ. 2023, 4, 831–846. [Google Scholar] [CrossRef]
- Ahmed, M.; Asim, M.; Ahmad, S.; Aslam, M. Climate change, agricultural productivity, and food security. In Global Agricultural Production: Resilience to Climate Change; Springer: Cham, Switzerland, 2023; pp. 31–72. [Google Scholar]
- Reed, K.A.; Wehner, M.F.; Zarzycki, C.M. Attribution of 2020 hurricane season extreme rainfall to human-induced climate change. Nat. Commun. 2022, 13, 1905. [Google Scholar] [CrossRef]
- Subedi, B.; Poudel, A.; Aryal, S. The impact of climate change on insect pest biology and ecology: Implications for pest management strategies, crop production, and food security. J. Agric. Food Res. 2023, 14, 100733. [Google Scholar] [CrossRef]
- Angmor, G.D.M. Climate Change Flooding and Diseases in Sub Sahara Africa: Trends and Adaptations Strategies (A Review). Korean J. Physiol. Pharmacol. 2024, 28, 8–21. [Google Scholar]
- Obidike-Ugwu, E.O.; Bege, B.; Ariwaodo, J.O.; Nwafor, O.E. Land-use changes and management impact on soil quality indicators in tropical ecosystem. Environ. Dev. Sustain. 2023, 27, 3513–3527. [Google Scholar] [CrossRef]
- Chisadza, B.; Musinguzi, S.P.; Gwate, O.; Malinga, W. Review of the land use and climate change impact assessments in semiarid ecosystems in Africa: Opportunities and challenges. Water Environ. Sustain. 2023, 3, 50–62. [Google Scholar]
- Mpala, T.A.; Simatele, M.D. Climate-smart agricultural practices among rural farmers in Masvingo district of Zimbabwe: Perspectives on the mitigation strategies to drought and water scarcity for improved crop production. Front. Sustain. Food Syst. 2024, 7, 1298908. [Google Scholar] [CrossRef]
- Dangwa, L.; De Wit, C.M.P. An Assessment of Conservation Agriculture Adoption by Smallholder Farmers: A Case of Goromonzi, Zimbabwe; Stellenbosch University: Stellenbosch, South Africa, 2024. [Google Scholar]
- Chisadza, B.; Gwate, O.; Musinguzi, S.P. Assessing land degradation neutrality in semiarid dryland agroecosystems of the matabeleland North province of Zimbabwe. Earth Sci. Inform. 2024, 17, 4035–4054. [Google Scholar] [CrossRef]
- Gwate, O.; Dube, H.; Sibanda, M.; Dube, T.; Chisadza, B.; Nyikadzino, B. Understanding the influence of land cover change and landscape pattern change on evapotranspiration variations in Gwayi catchment of Zimbabwe. Geocarto Int. 2022, 37, 10016–10032. [Google Scholar] [CrossRef]
- Jagannathan, K.; Pathak, T.B.; Doll, D. Are long-term climate projections useful for on-farm adaptation decisions? Front. Clim. 2023, 4, 1005104. [Google Scholar] [CrossRef]
- Knowling, M.J.; White, J.T.; Grigg, D.; Collins, C.; Westra, S.; Walker, R.R.; Pellegrino, A.; Ostendorf, B.; Bennett, B.; Alzraiee, A. Operationalizing crop model data assimilation for improved on-farm situational awareness. Agric. Meteorol. 2023, 338, 109502. [Google Scholar] [CrossRef]
- Ricart, S.; Gandolfi, C.; Castelletti, A. Climate change awareness, perceived impacts, and adaptation from farmers’ experience and behavior: A triple-loop review. Reg. Environ. Chang. 2023, 23, 82. [Google Scholar] [CrossRef]
- Kamruzzaman, M.; Rahman, A.T.M.S.; Basak, A.; Alam, J.; Das, J. Assessment and adaptation strategies of climate change through the prism of farmers’ perception: A case study. Int. J. Environ. Sci. Technol. 2023, 20, 5609–5628. [Google Scholar] [CrossRef]
- Ogundeji, A.A. Adaptation to Climate Change and Impact on Smallholder Farmers’ Food Security in South Africa. Agriculture 2022, 12, 589. [Google Scholar] [CrossRef]
- Mutandwa, E.; Hanyani-Mlambo, B.; Manzvera, J. Exploring the link between climate change perceptions and adaptation strategies among smallholder farmers in Chimanimani district of Zimbabwe. Int. J. Soc. Econ. 2019, 46, 850–860. [Google Scholar] [CrossRef]
- Olabanji, M.F.; Davis, N.; Ndarana, T.; Kuhudzai, A.G.; Mahlobo, D. Assessment of smallholder farmers’ perception and adaptation response to climate change in the olifants catchment, South Africa. J. Water Clim. Chang. 2021, 12, 3388–3403. [Google Scholar] [CrossRef]
- Etana, D.; Snelder, D.J.R.M.; van Wesenbeeck, C.F.A.; de Cock Buning, T. Review of the effectiveness of smallholder farmers’ adaptation to climate change and variability in developing countries. J. Environ. Plan. Manag. 2022, 65, 759–784. [Google Scholar] [CrossRef]
- Tirivarombo, S. Climate Variability and Climate Change in Water Resources Management of the Zambezi River Basin. Ph.D. Thesis, Rhodes University, Makhanda, South Africa, 2012. [Google Scholar]
- Ndhlovu, E.; Dube, K. Contract Farming and Climate Change Adaptation in Rural Zimbabwe. Mank. Q. 2024, 64, 579–594. [Google Scholar] [CrossRef]
- ZIMSAT. Zimbabwe 2022 Population and Housing Census Report; Zimbabwe National Statistics Agency: Harare, Zimbabwe, 2022. [Google Scholar]
- Cochran, W.G. Sampling Techniques; John Wiley & Sons: New York, NY, USA, 1977. [Google Scholar]
- Fatch, P.; Masangano, C.; Hilger, T.; Jordan, I.; Mambo, I.; Kamoto, J.F.M.; Kalimbira, A.; Nuppenau, E.A. Holistic agricultural diversity index as a measure of agricultural diversity: A cross-sectional study of smallholder farmers in Lilongwe district of Malawi. Agric. Syst. 2021, 187, 102991. [Google Scholar] [CrossRef]
- Cox, J. Your Opinion Please: How to Build the Best Questionnaires in the Field of Education; Corwin Press: Newbury Park, CA, USA, 1996. [Google Scholar]
- Cooksey, R.W. Descriptive Statistics for Summarizing Data. In Illustrating Statistical Procedures: Finding Meaning in Quantitative Data; Springer: Singapore, 2020; pp. 61–139. [Google Scholar]
- Braun, V.; Clarke, V. Toward good practice in thematic analysis: Avoiding common problems and becoming a knowing researcher. Int. J. Transgend. Health 2023, 24, 1–6. [Google Scholar] [CrossRef]
- Adeboa, J.; Anang, B.T. Perceptions and adaptation strategies of smallholder farmers to climate change in Builsa South district of Ghana. Cogent Soc. Sci. 2024, 10, 2358151. [Google Scholar] [CrossRef]
- Makuvaro, V.; Murewi, C.T.F.; Dimes, J.; Chagonda, I. Are Smallholder Farmers’ Perceptions of Climate Variability and Change Supported by Climate Records? A Case Study of Lower Gweru in Semiarid Central Zimbabwe. Weather Clim. Soc. 2018, 10, 35–49. [Google Scholar] [CrossRef]
- Kalele, D.N.; Ogara, W.O.; Oludhe, C.; Onono, J.O. Climate change impacts and relevance of smallholder farmers’ response in arid and semiarid lands in Kenya. Sci. Afr. 2021, 12, e00814. [Google Scholar]
- Akanbi, R.T.; Davis, N.; Ndarana, T. Climate change and maize production in the Vaal catchment of South Africa: Assessment of farmers’ awareness, perceptions and adaptation strategies. Clim. Res. 2021, 82, 191–209. [Google Scholar] [CrossRef]
- Belay, A.; Recha, J.W.; Woldeamanuel, T.; Morton, J.F. Smallholder farmers’ adaptation to climate change and determinants of their adaptation decisions in the Central Rift Valley of Ethiopia. Agric. Food Secur. 2017, 6, 24. [Google Scholar] [CrossRef]
- Nhamo, L.; Matchaya, G.; Mabhaudhi, T.; Nhlengethwa, S.; Nhemachena, C.; Mpandeli, S. Cereal Production Trends under Climate Change: Impacts and Adaptation Strategies in Southern Africa. Agriculture 2019, 9, 30. [Google Scholar] [CrossRef]
- Chitongo, L. Rural livelihood resilience strategies in the face of harsh climatic conditions. The case of ward 11 Gwanda, South, Zimbabwe. Cogent Soc. Sci. 2019, 5, 1617090. [Google Scholar] [CrossRef]
- Lottering, S.; Mafongoya, P.; Lottering, R. Drought and its impacts on small-scale farmers in sub-Saharan Africa: A review. S. Afr. Geogr. J. 2021, 103, 319–341. [Google Scholar] [CrossRef]
- Coe, M.T.; Marthews, T.R.; Costa, M.H.; Galbraith, D.R.; Greenglass, N.L.; Imbuzeiro, H.M.A.; Levine, N.M.; Malhi, Y.; Moorcroft, P.R.; Muza, M.N.; et al. Deforestation and climate feedbacks threaten the ecological integrity of south–southeastern Amazonia. Philos. Trans. R. Soc. B Biol. Sci. 2013, 368, 20120155. [Google Scholar] [CrossRef] [PubMed]
- Staal, A.; Flores, B.M.; Aguiar, A.P.D.; Bosmans, J.H.C.; Fetzer, I.; Tuinenburg, O.A. Feedback between drought and deforestation in the Amazon. Environ. Res. Lett. 2020, 15, 044024. [Google Scholar] [CrossRef]
- Díaz-Pereira, E.; Romero-Díaz, A.; de Vente, J. Sustainable grazing land management to protect ecosystem services. Mitig. Adapt. Strateg. Glob. Chang. 2020, 25, 1461–1479. [Google Scholar] [CrossRef]
- Mavhuru, B. Analysis of Land Use and Land Cover Change and Its Impact on Soil Erosion in Nzhelele Valley, Limpopo Province, South Africa. Ph.D. Thesis, University of Venda, Thohoyandou, South Africa, 2021. [Google Scholar]
- Sibanda, M.B.; Mathe, B. Alternative Livelihoods: Small Scale Mining in Hope Fountain, Umguza Rural District, Zimbabwe. Int. J. Multidiscip. Res. Growth Eval. 2021, 2, 205–213. [Google Scholar]
- Bekele, S. Impacts of climate change on livestock production: A review. J. Nat. Sci. Res. 2017, 7, 53–59. [Google Scholar]
- Santini, M.; Noce, S.; Antonelli, M.; Caporaso, L. Complex drought patterns robustly explain global yield loss for major crops. Sci. Rep. 2022, 12, 5792. [Google Scholar] [CrossRef]
- Mavhura, E.; Manatsa, D.; Mushore, T. Adaptation to drought in arid and semiarid environments: Case of the Zambezi Valley, Zimbabwe. JÀMBÁ-J. Disaster Risk Stud. 2015, 7, a144. [Google Scholar] [CrossRef]
- Orimoloye, I.R. Agricultural drought and its potential impacts: Enabling decision-support for food security in vulnerable regions. Front. Sustain. Food Syst. 2022, 6, 838824. [Google Scholar] [CrossRef]
- Ebanyat, P.; de Ridder, N.; de Jager, A.; Delve, R.J.; Bekunda, M.A.; Giller, K.E. Drivers of land use change and household determinants of sustainability in smallholder farming systems of Eastern Uganda. Popul. Environ. 2010, 31, 474–506. [Google Scholar] [CrossRef] [PubMed]
- Lutta, A.; Kehbila, A.; Mungo, C.; Sunguti, E.; Osano, P.; Kisang, O. Building climate-resilient value chains in arid and semiarid regions: A VC-ARID approach for rangeland adaptation in Kenya. Environ. Dev. Sustain. 2024, 1–24. Available online: https://link.springer.com/10.1007/s10668-024-05229-6 (accessed on 13 May 2025).
- Tadesse, A.; Hailu, W. Causes and Consequences of Land Degradation in Ethiopia: A Review. Int. J. Sci. Qual. Anal. 2024, 10, 10–21. [Google Scholar] [CrossRef]
- Datta, P.; Behera, B. Assessing the role of agriculture-forestry-livestock nexus in improving farmers’ food security in South Asia: A systematic literature review. Agric. Syst. 2024, 213, 103807. [Google Scholar] [CrossRef]
District | Percent Response (%) | ||||
---|---|---|---|---|---|
Never | Once | 2–3 Times | 4–5 Times | Every Year | |
Binga | 2.22 | 33.33 | 20.00 | 18.89 | 25.56 |
Bubi | 0.00 | 5.38 | 92.47 | 2.15 | 0.00 |
Lupane | 1.67 | 19.17 | 71.67 | 3.33 | 4.17 |
Tsholotsho | 0.00 | 2.22 | 90.00 | 3.33 | 4.44 |
Umguza | 1.11 | 28.89 | 70.00 | 0.00 | 0.00 |
Overall Proportion | 1.04 | 17.81 | 69.15 | 5.38 | 6.63 |
District | Percent Response (%) | ||||
---|---|---|---|---|---|
Increased Frequency of Dry Spells/Droughts | Decreased Rainfall Amounts | Higher Temperatures | More Erratic Rainfall | Late Start of Rains | |
Binga | 32.22 | 30.00 | 8.89 | 13.33 | 15.56 |
Bubi | 62.37 | 5.38 | 23.66 | 8.60 | 0.00 |
Lupane | 32.50 | 35.83 | 5.00 | 9.17 | 17.50 |
Tsholotsho | 38.89 | 10.00 | 10.00 | 14.44 | 26.67 |
Umguza | 2.22 | 11.11 | 0.00 | 63.33 | 23.33 |
Overall Proportion | 33.75 | 19.46 | 9.32 | 20.91 | 16.56 |
District | What Changes Have You Noticed in the Forests, Water Sources, and Landscape | |||||
---|---|---|---|---|---|---|
Percent Response (%) | ||||||
Deforestation | Land Degradation | Drying up of Water Sources | Increased Flooding | Drying up of Wetlands | No Change | |
Binga | 11.11 | 16.67 | 57.78 | 1.11 | 0.00 | 13.33 |
Bubi | 25.81 | 72.04 | 2.15 | 0.00 | 0.00 | 0.00 |
Lupane | 0.83 | 16.67 | 68.33 | 0.83 | 10.83 | 2.50 |
Tsholotsho | 6.67 | 22.22 | 70.00 | 0.00 | 1.11 | 0.00 |
Umguza | 52.22 | 14.44 | 11.11 | 0.00 | 20.00 | 2.22 |
Overall Proportion | 18.22 | 27.95 | 43.27 | 0.41 | 6.63 | 3.52 |
District | % Response | ||||
---|---|---|---|---|---|
No Impact | Decreased Slightly | Decreased Moderately | Decreased Significantly | Very Negatively Impacted | |
Binga | 3.33 | 3.33 | 13.33 | 52.22 | 27.78 |
Bubi | 1.08 | 0.00 | 6.45 | 51.61 | 40.86 |
Lupane | 0.00 | 0.00 | 8.33 | 26.67 | 65.00 |
Tsholotsho | 0.00 | 0.00 | 18.89 | 52.22 | 28.89 |
Umguza | 0.00 | 20.00 | 7.78 | 18.89 | 53.33 |
Overall Proportion | 0.83 | 4.35 | 10.77 | 39.54 | 44.51 |
District | No Impact | Decreased Slightly | Decreased Moderately | Decreased Significantly | Very Negatively Impacted |
---|---|---|---|---|---|
Binga | 20.00 | 16.67 | 16.67 | 31.11 | 15.56 |
Bubi | 12.90 | 0.00 | 11.83 | 44.09 | 31.18 |
Lupane | 4.17 | 1.67 | 13.33 | 23.33 | 57.50 |
Tsholotsho | 0.00 | 0.00 | 22.22 | 50.00 | 27.78 |
Umguza | 16.67 | 26.67 | 14.44 | 20.00 | 22.22 |
Overall Proportion | 10.35 | 8.49 | 15.53 | 33.13 | 32.51 |
Independent Variable | Dependent Variable | Test Statistic | χ2 Value | df | p-Value |
---|---|---|---|---|---|
Drought Frequency | Crop Yield Impact | Pearson Chi-Square | 141.513 | 16 | 0.000 |
Likelihood Ratio | 55.805 | 16 | 0.000 | ||
Drought Impact | Livestock Health | Pearson Chi-Square | 102.593 | 16 | 0.000 |
Likelihood Ratio | 96.484 | 16 | 0.000 | ||
Land-Use Changes | Rainfall Patterns | Pearson Chi-Square | 611.937 | 400 | 0.000 |
Likelihood Ratio | 568.908 | 400 | 0.000 | ||
Rainfall Patterns | Landscape Changes | Pearson Chi-Square | 122.220 | 20 | 0.000 |
Likelihood Ratio | 114.681 | 20 | 0.000 | ||
Food Security | Land-Use Changes | Pearson Chi-Square | 166.094 | 100 | 0.000 |
Likelihood Ratio | 185.419 | 100 | 0.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Musinguzi, S.P.; Chisadza, B.; Gwate, O.; Mpofu, N.; Mugoti, A.; Dagoudo, B.A.; Macherera, M. Smallholder Farmers’ Perceptions of Climate Variability and Land-Use Changes in Semiarid Gwayi Catchment Agroecosystems. Earth 2025, 6, 45. https://doi.org/10.3390/earth6020045
Musinguzi SP, Chisadza B, Gwate O, Mpofu N, Mugoti A, Dagoudo BA, Macherera M. Smallholder Farmers’ Perceptions of Climate Variability and Land-Use Changes in Semiarid Gwayi Catchment Agroecosystems. Earth. 2025; 6(2):45. https://doi.org/10.3390/earth6020045
Chicago/Turabian StyleMusinguzi, Simon Peter, Bright Chisadza, Onalenna Gwate, Nkululeko Mpofu, Alban Mugoti, Bienvenu Akowedaho Dagoudo, and Margaret Macherera. 2025. "Smallholder Farmers’ Perceptions of Climate Variability and Land-Use Changes in Semiarid Gwayi Catchment Agroecosystems" Earth 6, no. 2: 45. https://doi.org/10.3390/earth6020045
APA StyleMusinguzi, S. P., Chisadza, B., Gwate, O., Mpofu, N., Mugoti, A., Dagoudo, B. A., & Macherera, M. (2025). Smallholder Farmers’ Perceptions of Climate Variability and Land-Use Changes in Semiarid Gwayi Catchment Agroecosystems. Earth, 6(2), 45. https://doi.org/10.3390/earth6020045