Monitoring Ecosystem Dynamics Using Machine Learning: Random Forest-Based LULC Analysis in Dinder Biosphere Reserve, Sudan †
Abstract
:1. Introduction
2. Methodology: Study Area and Analysis Framework
3. Results and Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hoque, M.Z.; Ahmed, M.; Islam, I.; Cui, S.; Xu, L.; Prodhan, F.A.; Ahmed, S.; Rahman, M.A.; Hasan, J. Monitoring Changes in Land Use Land Cover and Ecosystem Service Values of Dynamic Saltwater and Freshwater Systems in Coastal Bangladesh by Geospatial Techniques. Water 2022, 14, 2293. [Google Scholar] [CrossRef]
- Winkler, K.; Fuchs, R.; Rounsevell, M.; Herold, M. Global land use changes are four times greater than previously estimated. Nat. Commun. 2021, 12, 2501. [Google Scholar] [CrossRef]
- Song, X.P.; Hansen, M.C.; Stehman, S.V.; Potapov, P.V.; Tyukavina, A.; Vermote, E.F.; Townshend, J.R. Global land change from 1982 to 2016. Nature 2018, 560, 639–643. [Google Scholar] [CrossRef]
- Petroni, M.L.; Siqueira-Gay, J.; Gallardo, A.L.C.F. Understanding land use change impacts on ecosystem services within urban protected areas. Landsc. Urban Plan 2022, 223, 104404. [Google Scholar] [CrossRef]
- Mumtaz, M.; de Oliveira, J.A.P.; Ali, S.H. Climate change impacts and adaptation in agricultural sector: The case of local responses in Punjab, Pakistan. In Climate Change and Agriculture; Hussain, S., Ed.; IntechOpen: London, UK, 2019; pp. 1–14. [Google Scholar] [CrossRef]
- Daba, M.H.; You, S. Quantitatively Assessing the Future Land-Use/Land-Cover Changes and Their Driving Factors in the Upper Stream of the Awash River Based on the CA–Markov Model and Their Implications for Water Resources Management. Sustainability 2022, 14, 1538. [Google Scholar] [CrossRef]
- Dudley, N. (Ed.) Guidelines for Applying Protected Area Management Categories; IUCN: Gland, Switzerland, 2008; 86p. [Google Scholar]
- Zhang, L.J.; Shao, Z.F.; Liu, J.C.; Cheng, Q.M. Deep learning-based retrieval of forest aboveground biomass from combined LiDAR and landsat 8 data. Remote Sens. 2019, 11, 1459. [Google Scholar] [CrossRef]
- Salomão, N.V.; Silva, M.D.D.; Machado, E.L.M. Dynamics of vegetation structure in a fragmented landscape in Minas Gerais, Brazil. Braz. J. Biol. 2019, 79, 678–685. [Google Scholar] [CrossRef]
- Mancino, G.; Noël, A.; Ripullone, F.; Ferrara, A. Landsat TM imagery and NDVI differencing to detect vegetation change: Assessing natural forest expansion in Basilicata, southern Italy. Iforest Biogeosciences For. 2013, 7, 75. [Google Scholar] [CrossRef]
- Wang, J.; Bretz, M.; Dewan, M.A.A.; Delavar, M.A. Machine learning in modelling land-use and land cover-change (LULCC): Status, challenges and prospects. Sci. Total Environ. 2022, 822, 153559. [Google Scholar] [CrossRef]
- Ju, J.; Masek, J.G. The vegetation greenness trend in Canada and US Alaska from 1984–2012 landsat data. Remote Sens. Environ. 2016, 176, 1–16. [Google Scholar] [CrossRef]
- Yu, L.; Liang, L.; Wang, J.; Zhao, Y.; Cheng, Q.; Hu, L.; Liu, S.; Yu, L.; Wang, X.; Zhu, P.; et al. Meta-discoveries from a synthesis of satellite-based land-cover mapping research. Int. J. Remote Sens. 2014, 35, 4573–4588. [Google Scholar] [CrossRef]
- Tikuye, B.G.; Rusnak, M.; Manjunatha, B.R.; Jose, J. Land use and land cover change detection using the random forest approach: The case of the Upper Blue Nile River basin, Ethiopia. Glob. Chall. 2023, 7, 2300155. [Google Scholar] [CrossRef] [PubMed]
- Ngondo, J.; Mango, J.; Liu, R.; Nobert, J.; Dubi, A.; Cheng, H. Land-use and land-cover (LULC) change detection and the implications for coastal water resource management in the Wami–Ruvu Basin, Tanzania. Sustainability 2021, 13, 4092. [Google Scholar] [CrossRef]
- Pande, C.B. Land use/land cover and change detection mapping in Rahuri watershed area (MS), India using the google earth engine and machine learning approach. Geocarto Int. 2022, 37, 13860–13880. [Google Scholar] [CrossRef]
- Kulkarni, A.D.; Lowe, B. Random Forest Algorithm for Land Cover Classification. Computer Science Faculty Publications and Presentations: 2016; Paper 1. Available online: http://hdl.handle.net/10950/341 (accessed on 8 May 2025).
- Pelletier, C.; Valero, S.; Inglada, J.; Champion, N.; Dedieu, G. Assessing the robustness of Random Forests to map land cover with high resolution satellite image series over large areas. Remote Sens. Environ. 2016, 187, 156–168. [Google Scholar] [CrossRef]
- Belgiu, M.; Drăguţ, L. Random forest in remote sensing: A review of applications and future directions. ISPRS J. Photogramm. Remote Sens. 2016, 114, 24–31. [Google Scholar] [CrossRef]
- Reyes-Palomeque, G.; Dupuy, J.M.; Portillo-Quintero, C.A.; Andrade, J.L.; Tun-Dzul, F.J.; Hernández-Stefanoni, J.L. Mapping Forest age and characterizing vegetation structure and species composition in tropical dry forests. Ecol. Indic. 2021, 120, 106955. [Google Scholar] [CrossRef]
- Chowdhury, M.d.S. Comparison of accuracy and reliability of random forest, support vector machine, artificial neural network and maximum likelihood method in land use/cover classification of urban setting. Environ. Chall. 2024, 14, 100800. [Google Scholar] [CrossRef]
- Lawer, E.A. An evaluation of single and multi-date Landsat image classifications using random forest algorithm in a semi-arid savanna of Ghana, West Africa. Sci. Afr. 2024, 26, e02434. [Google Scholar] [CrossRef]
- Tamiminia, H.; Salehi, B.; Mahdianpari, M.; Quackenbush, L.; Adeli, S.; Brisco, B. Google Earth Engine for geo-big data applications: A meta-analysis and systematic review. ISPRS J. Photogramm. Remote Sens. 2020, 164, 152–170. [Google Scholar] [CrossRef]
- Twisa, S.; Buchroithner, M.F. Land-use and land-cover (LULC) change detection in Wami river basin, Tanzania. Land 2019, 8, 136. [Google Scholar] [CrossRef]
- Hassaballah, K.; Mohamed, Y.A.; Uhlenbrook, S. The Mayas wetlands of the Dinder and Rahad: Tributaries of the Blue Nile Basin (Sudan). In The Wetland Book; Springer: Dordrecht, The Netherland, 2016; pp. 1–13. [Google Scholar] [CrossRef]
- Mohammed, E.M.; Hamed, A.M.; Ndakidemi, P.A.; Treydte, A.C. Illegal harvesting threatens fruit production and seedling recruitment of Balanites aegyptiaca in Dinder Biosphere Reserve, Sudan. Glob. Ecol. Conserv. 2021, 29, e01732. [Google Scholar] [CrossRef]
- Li, Z.; Chen, X.; Qi, J.; Xu, C.; An, J.; Chen, J. Accuracy assessment of land cover products in China from 2000 to 2020. Sci. Rep. 2023, 13, 12936. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, A.; Rotich, B.; Czimber, K. Climate Change as a Double-Edged Sword: Exploring the Potential of Environmental Recovery to Foster Stability in Darfur, Sudan. Climate 2025, 13, 63. [Google Scholar] [CrossRef]
Reference Class | Water | Built-Up | Vegetation | Bare Land | Crops | Total |
---|---|---|---|---|---|---|
Water | 53.20 | 0.00 | 0.11 | 0.06 | 0.00 | 53.37 |
Built-up | 0.00 | 0.15 | 0.04 | 0.38 | 0.02 | 0.59 |
Vegetation | 0.01 | 0.09 | 5.00 | 5.93 | 0.35 | 11.39 |
Bare land | 0.01 | 0.35 | 7.00 | 18.75 | 0.16 | 26.27 |
Crops | 0.01 | 0.18 | 1.62 | 6.51 | 0.05 | 8.38 |
Total | 53.24 | 0.78 | 13.78 | 31.62 | 0.58 | 100.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hasoba, A.M.M.; Yasin, E.H.E.; Osman, M.B.O.; Czimber, K. Monitoring Ecosystem Dynamics Using Machine Learning: Random Forest-Based LULC Analysis in Dinder Biosphere Reserve, Sudan. Eng. Proc. 2025, 94, 2. https://doi.org/10.3390/engproc2025094002
Hasoba AMM, Yasin EHE, Osman MBO, Czimber K. Monitoring Ecosystem Dynamics Using Machine Learning: Random Forest-Based LULC Analysis in Dinder Biosphere Reserve, Sudan. Engineering Proceedings. 2025; 94(1):2. https://doi.org/10.3390/engproc2025094002
Chicago/Turabian StyleHasoba, Ahmed M. M., Emad H. E. Yasin, Mohamed B. O. Osman, and Kornel Czimber. 2025. "Monitoring Ecosystem Dynamics Using Machine Learning: Random Forest-Based LULC Analysis in Dinder Biosphere Reserve, Sudan" Engineering Proceedings 94, no. 1: 2. https://doi.org/10.3390/engproc2025094002
APA StyleHasoba, A. M. M., Yasin, E. H. E., Osman, M. B. O., & Czimber, K. (2025). Monitoring Ecosystem Dynamics Using Machine Learning: Random Forest-Based LULC Analysis in Dinder Biosphere Reserve, Sudan. Engineering Proceedings, 94(1), 2. https://doi.org/10.3390/engproc2025094002