Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (8,419)

Search Parameters:
Keywords = Sentinel-2

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 11158 KB  
Article
SBAS-InSAR Quantifies Groundwater–Urban Construction Evolution Impacts on Tianjin’s Land Subsidence
by Jia Xu, Yongqiang Cao, Jie Liu, Jiayu Hou, Wei Yan, Changrong Yi and Guodong Jia
Geosciences 2026, 16(2), 57; https://doi.org/10.3390/geosciences16020057 (registering DOI) - 27 Jan 2026
Abstract
Land subsidence constitutes a critical hazard to coastal megacities globally, amplifying flood risks and damaging infrastructure. Taking Tianjin—a major port city underlain by compressible sediments and affected by groundwater over-exploitation—as a case study, we address two key research gaps: the absence of a [...] Read more.
Land subsidence constitutes a critical hazard to coastal megacities globally, amplifying flood risks and damaging infrastructure. Taking Tianjin—a major port city underlain by compressible sediments and affected by groundwater over-exploitation—as a case study, we address two key research gaps: the absence of a quantitative framework coupling groundwater extraction with construction land expansion, and the inadequate separation of seasonal and long-term subsidence drivers. We developed an integrated remote-sensing-based approach: high-resolution subsidence time series (2016–2023) were derived via Small BAseline Subset Interferometric Synthetic Aperture Radar (SBAS-InSAR) using Sentinel-1 Synthetic Aperture Radar (SAR) imagery, validated against leveling measurements (R > 0.885, error < 20 mm). This subsidence dataset was fused with groundwater level records and annual construction land maps. Seasonal-Trend Decomposition using Loess (STL) isolated trend, seasonal, and residual components, which were input into a Random Forest (RF) model to quantify the relative contributions of subsidence drivers. Dynamic Time Warping (DTW) and Cross-Wavelet Transform (CWT) were further employed to characterize temporal patterns and lag effects between subsidence and its drivers. Our results reveal a distinct shifting subsidence pattern: “areal expansion but intensity weakening.” Groundwater control policies mitigated five historical subsidence funnels, reducing areas with severe subsidence from 72.36% to <5%, while the total subsiding area expanded by 1024.74 km2, with new zones emerging (e.g., northern Dongli District). The RF model identified the long-term groundwater level trend as the dominant driver (59.5% contribution), followed by residual (23.3%) and seasonal (17.2%) components. Cross-spectral analysis confirmed high coherence between subsidence and long-term groundwater trends; the seasonal component exhibited a dominant resonance period of 12 months and a consistent subsidence response lag of 3–4 months. Construction impacts were conceptualized as a “load accumulation-soil compression-time lag” mechanism, with high-intensity engineering projects inducing significant local subsidence. This study provides a robust quantitative framework for disentangling the complex interactions between subsidence, groundwater, and urban expansion, offering critical insights for evidence-based hazard mitigation and sustainable urban planning in vulnerable coastal environments worldwide. Full article
(This article belongs to the Topic Remote Sensing and Geological Disasters)
Show Figures

Figure 1

27 pages, 3922 KB  
Article
Hierarchical Multiscale Fusion with Coordinate Attention for Lithologic Mapping from Remote Sensing
by Fuyuan Xie and Yongguo Yang
Remote Sens. 2026, 18(3), 413; https://doi.org/10.3390/rs18030413 - 26 Jan 2026
Abstract
Accurate lithologic maps derived from satellite imagery underpin structural interpretation, mineral exploration, and geohazard assessment. However, automated mapping in complex terranes remains challenging because spectrally similar units, narrow anisotropic bodies, and ambiguous contacts can degrade boundary fidelity. In this study, we propose SegNeXt-HFCA, [...] Read more.
Accurate lithologic maps derived from satellite imagery underpin structural interpretation, mineral exploration, and geohazard assessment. However, automated mapping in complex terranes remains challenging because spectrally similar units, narrow anisotropic bodies, and ambiguous contacts can degrade boundary fidelity. In this study, we propose SegNeXt-HFCA, a hierarchical multiscale fusion network with coordinate attention for lithologic segmentation from a Sentinel-2/DEM feature stack. The model builds on SegNeXt and introduces a hierarchical multiscale encoder with coordinate attention to jointly capture fine textures and scene-level structure. It further adopts a class-frequency-aware hybrid loss that combines boundary-weighted online hard-example mining cross-entropy with Lovász-Softmax to better handle long-tailed classes and ambiguous contacts. In addition, we employ a robust training and inference scheme, including entropy-guided patch sampling, exponential moving average of parameters, test-time augmentation, and a DenseCRF-based post-refinement. Two study areas in the Beishan orogen, northwestern China (Huitongshan and Xingxingxia), are used to evaluate the method with a unified 10-channel Sentinel-2/DEM feature stack. Compared with U-NetFormer, PSPNet, DeepLabV3+, DANet, LGMSFNet, SegFormer, BiSeNetV2, and the SegNeXt backbone, SegNeXt-HFCA improves mean intersection-over-union (mIoU) by about 3.8% in Huitongshan and 2.6% in Xingxingxia, respectively, and increases mean pixel accuracy by approximately 3–4%. Qualitative analyses show that the proposed framework better preserves thin-unit continuity, clarifies lithologic contacts, and reduces salt-and-pepper noise, yielding geologically more plausible maps. These results demonstrate that hierarchical multiscale fusion with coordinate attention, together with class- and boundary-aware optimization, provides a practical route to robust lithologic mapping in structurally complex regions. Full article
(This article belongs to the Section Remote Sensing for Geospatial Science)
Show Figures

Figure 1

24 pages, 9506 KB  
Article
An SBAS-InSAR Analysis and Assessment of Landslide Deformation in the Loess Plateau, China
by Yan Yang, Rongmei Liu, Liang Wu, Tao Wang and Shoutao Jiao
Remote Sens. 2026, 18(3), 411; https://doi.org/10.3390/rs18030411 - 26 Jan 2026
Abstract
This study conducts a landslide deformation assessment in Tianshui, Gansu Province, on the Chinese Loess Plateau, utilizing the Small Baseline Subset InSAR (SBAS-InSAR) method integrated with velocity direction conversion and Z-score clustering. The Chinese Loess Plateau is one of the most landslide-prone regions [...] Read more.
This study conducts a landslide deformation assessment in Tianshui, Gansu Province, on the Chinese Loess Plateau, utilizing the Small Baseline Subset InSAR (SBAS-InSAR) method integrated with velocity direction conversion and Z-score clustering. The Chinese Loess Plateau is one of the most landslide-prone regions in China due to frequent rains, strong topographical gradients and severe soil erosion. By constructing subsets of interferograms, SBAS-InSAR can mitigate the influence of decorrelation to a certain extent, making it a highly effective technique for monitoring regional surface deformation and identifying landslides. To overcome the limitations of the satellite’s one-dimensional Line-of-Sight (LOS) measurements and the challenge of distinguishing true landslide signals from noise, two optimization strategies were implemented. First, LOS velocities were projected onto the local steepest slope direction, assuming translational movement parallel to the slope. Second, a Z-score clustering algorithm was employed to aggregate measurement points with consistent kinematic signatures, enhancing identification robustness, with a slight trade-off in spatial completeness. Based on 205 Sentinel-1 Single-Look Complex (SLC) images acquired from 2014 to 2024, the integrated workflow identified 69 “active, very slow” and 63 “active, extremely slow” landslides. These results were validated through high-resolution historical optical imagery. Time series analysis reveals that creep deformation in this region is highly sensitive to seasonal rainfall patterns. This study demonstrates that the SBAS-InSAR post-processing framework provides a cost-effective, millimeter-scale solution for updating landslide inventories and supporting regional risk management and early warning systems in loess-covered terrains, with the exception of densely forested areas. Full article
Show Figures

Figure 1

26 pages, 4765 KB  
Article
Hybrid ConvLSTM U-Net Deep Neural Network for Land Use and Land Cover Classification from Multi-Temporal Sentinel-2 Images: Application to Yaoundé, Cameroon
by Ange Gabriel Belinga, Stéphane Cédric Tékouabou Koumetio and Mohammed El Haziti
Math. Comput. Appl. 2026, 31(1), 18; https://doi.org/10.3390/mca31010018 - 26 Jan 2026
Abstract
Accurate mapping of land use and land cover (LULC) is crucial for various applications such as urban planning, environmental management, and sustainable development, particularly in rapidly growing urban areas. African cities such as Yaoundé, Cameroon, are particularly affected by this rapid and often [...] Read more.
Accurate mapping of land use and land cover (LULC) is crucial for various applications such as urban planning, environmental management, and sustainable development, particularly in rapidly growing urban areas. African cities such as Yaoundé, Cameroon, are particularly affected by this rapid and often uncontrolled urban growth with complex spatio-temporal dynamics. Effective modeling of LULC indicators in such areas requires robust algorithms for high-resolution images segmentation and classification, as well as reliable data with great spatio-temporal distributions. Among the most suitable data sources for these types of studies, Sentinel-2 image time series, thanks to their high spatial (10 m) and temporal (5 days) resolution, are a valuable source of data for this task. However, for an effective LULC modeling purpose in such dynamic areas, many challenges remain, including spectral confusion between certain classes, seasonal variability, and spatial heterogeneity. This study proposes a hybrid deep learning architecture combining U-Net and Convolutional Long Short-Term Memory (ConvLSTM) layers, allowing the spatial structures and temporal dynamics of the Sentinel-2 series to be exploited jointly. Applied to the Yaoundé region (Cameroon) over the period 2018–2025, the hybrid model significantly outperforms the U-Net and ConvLSTM models alone. It achieves a macro-average F1 score of 0.893, an accuracy of 0.912, and an average IoU of 0.811 on the test set. These segmentation performances reached up to 0.948, 0.953, and 0.910 for precision, F1-score, and IoU, respectively, on the built-up areas class. Moreover, despite its better performance, in terms of complexity, the figures confirm that the hybrid does not significantly penalize evaluation speed. These results demonstrate the relevance of jointly integrating space and time for robust LULC classification from multi-temporal satellite images. Full article
Show Figures

Figure 1

40 pages, 9833 KB  
Article
Decision-Level Fusion of PS-InSAR and Optical Data for Landslide Susceptibility Mapping Using Wavelet Transform and MAMBA
by Hongyi Guo, Antonio M. Martínez-Graña, Leticia Merchán, Agustina Fernández and Manuel Casado
Land 2026, 15(2), 211; https://doi.org/10.3390/land15020211 - 26 Jan 2026
Abstract
Landslides remain a critical geohazard in mountainous regions, where intensified extreme rainfall and rapid land-use changes exacerbate slope instability, challenging the reliability of traditional single-sensor susceptibility assessments. To overcome the limitations of data heterogeneity and noise, this study presents a decision-level fusion strategy [...] Read more.
Landslides remain a critical geohazard in mountainous regions, where intensified extreme rainfall and rapid land-use changes exacerbate slope instability, challenging the reliability of traditional single-sensor susceptibility assessments. To overcome the limitations of data heterogeneity and noise, this study presents a decision-level fusion strategy integrating Permanent Scatterer InSAR (PS-InSAR) deformation dynamics with multi-source optical remote sensing indicators via a Wavelet Transform (WT) enhanced Multi-source Additive Model Based on Bayesian Analysis (MAMBA). San Martín del Castañar (Spain), a region characterized by rugged terrain and active deformation, served as the study area. We utilized Sentinel-1A C-band datasets (January 2020–February 2025) as the primary source for continuous monitoring, complemented by L-band ALOS-2 observations to ensure coherence in vegetated zones, yielding 24,102 high-quality persistent scatterers. The WT-based multi-scale enhancement improved the signal-to-noise ratio by 23.5% and increased deformation anomaly detection by 18.7% across 24,102 validated persistent scatterers. Bayesian fusion within MAMBA produced high-resolution susceptibility maps, indicating that very-high and high susceptibility zones occupy 24.0% of the study area while capturing 84.5% of the inventoried landslides. Quantitative validation against 1247 landslide events (2020–2025) achieved an AUC of 0.912, an overall accuracy of 87.3%, and a recall of 84.5%, outperforming Random Forest, Logistic Regression, and Frequency Ratio models by 6.8%, 10.8%, and 14.3%, respectively (p < 0.001). Statistical analysis further demonstrates a strong geo-ecological coupling, with landslide susceptibility significantly correlated with ecological vulnerability (r = 0.72, p < 0.01), while SHapley Additive exPlanations identify land-use type, rainfall, and slope as the dominant controlling factors. Full article
(This article belongs to the Special Issue Ground Deformation Monitoring via Remote Sensing Time Series Data)
Show Figures

Figure 1

24 pages, 5159 KB  
Article
Forest Age Estimation by Integrating Tree Species Identity and Multi-Source Remote Sensing: Validating Heterogeneous Growth Patterns Through the Plant Economic Spectrum Theory
by Xiyu Zhang, Chao Zhang, Li Zhou, Huan Liu, Lianjin Fu and Wenlong Yang
Remote Sens. 2026, 18(3), 407; https://doi.org/10.3390/rs18030407 - 26 Jan 2026
Abstract
Current mainstream remote sensing approaches to forest age estimation frequently neglect interspecific differences in functional traits, which may limit the accurate representation of species-specific tree growth strategies. This study develops and validates a technical framework that incorporates multi-source remote sensing and tree species [...] Read more.
Current mainstream remote sensing approaches to forest age estimation frequently neglect interspecific differences in functional traits, which may limit the accurate representation of species-specific tree growth strategies. This study develops and validates a technical framework that incorporates multi-source remote sensing and tree species functional trait heterogeneity to systematically improve the accuracy of plantation age mapping. We constructed a processing chain—“multi-source feature fusion–species identification–heterogeneity modeling”—for a typical karst plantation landscape in southeastern Yunnan. Using the Google Earth Engine (GEE) platform, we integrated Sentinel-1/2 and Landsat time-series data, implemented a Gradient Boosting Decision Tree (GBDT) algorithm for species classification, and built age estimation models that incorporate species identity as a proxy for the growth strategy heterogeneity delineated by the Plant Economic Spectrum (PES) theory. Key results indicate: (1) Species classification reached an overall accuracy of 89.34% under spatial block cross-validation, establishing a reliable basis for subsequent modeling. (2) The operational model incorporating species information achieved an R2 (coefficient of determination) of 0.84 (RMSE (Root Mean Square Error) = 6.52 years) on the test set, demonstrating a substantial improvement over the baseline model that ignored species heterogeneity (R2 = 0.62). This demonstrates that species identity serves as an effective proxy for capturing the growth strategy heterogeneity described by the Plant Economic Spectrum (PES) theory, which is both distinguishable and valuable for modeling within the remote sensing feature space. (3) Error propagation analysis demonstrated strong robustness to classification uncertainties (γ = 0.23). (4) Plantation structure in the region was predominantly young-aged, with forests aged 0–20 years covering over 70% of the area. Despite inherent uncertainties in ground-reference age data, the integrated framework exhibited clear relative superiority, improving R2 from 0.62 to 0.84. Both error propagation analysis (γ = 0.23) and Monte Carlo simulations affirmed the robustness of the tandem workflow and the stability of the findings, providing a reliable methodology for improved-accuracy plantation carbon sink quantification. Full article
Show Figures

Figure 1

32 pages, 29618 KB  
Article
Combining ALS and Satellite Data to Develop High-Resolution Forest Growth Potential Maps for Plantation Stands in Western Canada
by Faezeh Khalifeh Soltanian, Luiz Henrique Terezan, Colin E. Chisholm, Pamela Dykstra, William H. MacKenzie and Che Elkin
Remote Sens. 2026, 18(3), 406; https://doi.org/10.3390/rs18030406 - 26 Jan 2026
Abstract
Mapping forest growth potential across varying environments is challenging, especially when field measurements are limited. In this study, we integrated Airborne Laser Scanning (ALS) terrain derivatives and Sentinel-2 spectral indices to model Site Index (SI), using forest plantations, at 10-m spatial resolution across [...] Read more.
Mapping forest growth potential across varying environments is challenging, especially when field measurements are limited. In this study, we integrated Airborne Laser Scanning (ALS) terrain derivatives and Sentinel-2 spectral indices to model Site Index (SI), using forest plantations, at 10-m spatial resolution across three ecologically distinct regions in British Columbia (Aleza Lake, Deception, and Eagle Hills). Random Forest regression models were calibrated using field-measured SI and a multistep variable-selection procedure that included Variance Inflation Factor (VIF) screening followed by model-based variable importance assessment. Model performance was evaluated using repeated 10-fold cross-validation. The combined ALS–Sentinel-2 models substantially outperformed single-source models, yielding cross-validated R2 values of 0.63, 0.44, and 0.56 for Aleza Lake, Deception, and Eagle Hills, respectively, compared with R2 values of 0.40, 0.40, and 0.46 for ALS-only models. Key predictors consistently included terrain metrics, such as the Topographic Position Index (TPI) and the Topographic Wetness Index (TWI), along with satellite-derived chlorophyll-sensitive indices including S2REP (Sentinel-2 red-edge position), MTCI (MERIS terrestrial chlorophyll), and GNDVI (Greenness Normalized Difference Vegetation Index). A general model using predictors common to all regions performed comparably (R2 = 0.63, 0.41, 0.52), demonstrating the transferability and operational potential of the approach. These findings demonstrate that integrating ALS-derived terrain metrics with Sentinel-2 spectral indices provides a robust, age-independent framework for capturing spatial variability in forest productivity across landscapes. This multi-sensor fusion approach enhances traditional SI methods and single-sensor models, providing a scalable and operational tool for forest management and long-term planning in changing environmental conditions. Full article
Show Figures

Figure 1

13 pages, 486 KB  
Article
A National Forecast and Clinical Analysis of Pediatric Acute Mastoiditis in Kazakhstan
by Nazik Sabitova, Timur Shamshudinov, Assiya Kussainova, Dinara Toguzbayeva, Bolat Sadykov, Yevgeniya Rahanskaya and Laura Kassym
Children 2026, 13(2), 170; https://doi.org/10.3390/children13020170 - 26 Jan 2026
Abstract
Background: Ongoing healthcare and medical education reforms in Kazakhstan have been accompanied by persistent workforce shortages and reduced inpatient capacity in pediatric care. Therefore, this study aimed to assess and forecast selected healthcare system indicators using acute mastoiditis (AM) as a sentinel condition [...] Read more.
Background: Ongoing healthcare and medical education reforms in Kazakhstan have been accompanied by persistent workforce shortages and reduced inpatient capacity in pediatric care. Therefore, this study aimed to assess and forecast selected healthcare system indicators using acute mastoiditis (AM) as a sentinel condition while also describing its clinical and epidemiological characteristics. Materials and Methods: This study combined an analysis of national healthcare and demographic statistics in Kazakhstan from 1998 to 2024 with a retrospective review of pediatric AM patients treated at a tertiary referral center. Long-term trends in healthcare resources were assessed, and future needs were projected via average annual percentage change (AAPC) and time series forecasting methods. Clinical, laboratory, and radiological data were extracted from medical records. Statistical analyses were performed via SPSS version 24.0 (IBM Corp., Armonk, NY, USA). Results: From 1998 to 2024, the number of pediatricians and ENT hospital beds declined, whereas the density of ENT physicians remained relatively stable, and the proportion of ENT surgical procedures increased. Projections to 2030 suggest continued constraints in pediatric and ENT workforce capacity and further reductions in inpatient beds despite sustained growth in surgical demand. Among 95 pediatric AM cases, complications, most commonly subperiosteal abscess and zygomatic abscess, were identified in 40% of patients. Conclusions: AM may be considered a contextual indicator of pressures within specialized pediatric ENT services rather than a direct measure of healthcare system performance. These findings highlight the need for further studies to validate these observations and better inform healthcare planning. Full article
(This article belongs to the Special Issue Diagnosis and Management of Pediatric Ear and Vestibular Disorders)
Show Figures

Figure 1

26 pages, 12755 KB  
Article
Coupling Time-Series Sentinel-2 Imagery with Multi-Scale Landscape Metrics to Decipher Seasonal Waterbird Diversity Patterns
by Jiaxu Fan, Lei Cui, Yi Lian, Peng Du, Yangqianqian Ren, Xunqiang Mo and Zhengwang Zhang
Remote Sens. 2026, 18(3), 405; https://doi.org/10.3390/rs18030405 (registering DOI) - 25 Jan 2026
Abstract
Seasonal dynamics in wetland landscapes are closely associated with habitat availability and are likely to influence the spatial organization and diversity of waterbird communities. However, most existing studies rely on static land-cover representations or single spatial scales, limiting our ability to characterize how [...] Read more.
Seasonal dynamics in wetland landscapes are closely associated with habitat availability and are likely to influence the spatial organization and diversity of waterbird communities. However, most existing studies rely on static land-cover representations or single spatial scales, limiting our ability to characterize how waterbirds respond to seasonally shifting habitats across scales. Focusing on the Qilihai Wetland in Tianjin, China, we combined high-frequency waterbird surveys from 2019–2021 with multi-temporal, season-matched Sentinel-2 imagery and the Dynamic World dataset. Partial least squares regression (PLSR) was applied across a continuous spatial gradient (100–3000 m) to quantify scale-dependent statistical associations between landscape composition and configuration derived from satellite-mapped habitat mosaics on different functional groups. Waterbird diversity exhibited pronounced seasonal contrasts. During the breeding and post-fledging period, high-diversity assemblages were stably concentrated within core wetland areas, showing limited spatial variability. In contrast, during the wintering and stopover period, community distributions became increasingly dispersed, with elevated spatial heterogeneity and interannual variability associated with habitat reorganization. The scale of effect shifted systematically between seasons. In the breeding and post-fledging period, both waterfowl and waders responded predominantly to local-scale landscape factors (<800 m), consistent with nesting requirements and microhabitat conditions. During the wintering and stopover period, however, the characteristic response scale of waterfowl expanded to 1500–2000 m, suggesting stronger associations with broader landscape context, whereas waders remained closely linked to local-scale shallow-water and mudflat connectivity (~200 m). Functional traits played a key role in structuring these scale-dependent responses, with diving behavior and tarsus length being associated with strong constraints on habitat use. Overall, our results suggest that waterbird diversity patterns emerge from the interaction between seasonal habitat dynamics, landscape structure, and functional trait filtering, underscoring the need for phenology-informed, multi-scale conservation strategies that move beyond static spatial boundaries. Full article
(This article belongs to the Section Ecological Remote Sensing)
23 pages, 10123 KB  
Article
High-Resolution Satellite-Driven Estimation of Photosynthetic Carbon Sequestration in the Sundarbans Mangrove Forest, Bangladesh
by Nur Hussain, Md Adnan Rahman, Md Rezaul Karim, Parvez Rana, Md Nazrul Islam and Anselme Muzirafuti
Remote Sens. 2026, 18(3), 401; https://doi.org/10.3390/rs18030401 - 25 Jan 2026
Abstract
Mangrove forests provide essential climate regulation and coastal protection, yet fine-scale quantification of carbon dynamics remains limited in the Sundarbans due to spatial heterogeneity and tidal influences. This study estimated canopy structural and photosynthetic dynamics from 2019 to 2023 by integrating 10 m [...] Read more.
Mangrove forests provide essential climate regulation and coastal protection, yet fine-scale quantification of carbon dynamics remains limited in the Sundarbans due to spatial heterogeneity and tidal influences. This study estimated canopy structural and photosynthetic dynamics from 2019 to 2023 by integrating 10 m spatial high-resolution remote sensing with a light use efficiency (LUE) modeling framework. Leaf Area Index (LAI) was retrieved at 10 m resolution using the PROSAIL radiative transfer model applied to Sentinel-2 data to characterize the canopy structure of the mangrove forest. LUE-based Gross Primary Productivity (GPP) was estimated using Sentinel-2 vegetation and water indices and MODIS fPAR with station observatory temperature data. Annual carbon uptake showed clear interannual variation, ranging from 1881 to 2862 g C m−2 yr−1 between 2019 and 2023. GPP estimates were strongly correlated with MODIS-GPP (R2 = 0.86, p < 0.001), demonstrating the method’s reliability for monitoring mangrove carbon sequestration. LUE-based Solar-induced Chlorophyll Fluorescence (SIF) was derived at 10 m resolution and compared with TROPOMI-SIF observations to assess correspondence (R2 = 0.88, p < 0.001) with photosynthetic activity. LAI, GPP and SIF exhibited pronounced seasonal and interannual variability on photosynthetic activity, with higher values during the monsoon growing season and lower values during dry periods. Mean NDVI declined from 2019 to 2023 and modeled annual carbon uptake ranged from approximately 43 to 65 Mt CO2 eq, with lower sequestration in 2022–2023 associated with climatic stress. Strong correlations among LAI, NDVI, GPP, and SIF indicated consistent coupling between photosynthetic activity and carbon uptake in the mangrove ecosystem. These results provide a fine-scale assessment of mangrove carbon dynamics relevant to conservation and climate-mitigation planning in tropical regions. Full article
(This article belongs to the Special Issue Emerging Remote Sensing Technologies in Coastal Observation)
Show Figures

Figure 1

19 pages, 10092 KB  
Article
Short-Term Degradation of Aquatic Vegetation Induced by Demolition of Enclosure Aquaculture Revealed by Remote Sensing
by Sheng Xu, Ying Xu, Guanxi Chen and Juhua Luo
Remote Sens. 2026, 18(3), 400; https://doi.org/10.3390/rs18030400 - 24 Jan 2026
Viewed by 48
Abstract
Aquatic vegetation (AV) forms the structural and functional basis of lake ecosystems, providing irreplaceable ecological functions such as water self-purification and the sustenance of biodiversity. Under the “Yangtze River’s Great Protection Strategy”, the action of returning nets to the lake has significantly improved [...] Read more.
Aquatic vegetation (AV) forms the structural and functional basis of lake ecosystems, providing irreplaceable ecological functions such as water self-purification and the sustenance of biodiversity. Under the “Yangtze River’s Great Protection Strategy”, the action of returning nets to the lake has significantly improved water-quality in the middle and lower reaches of the Yangtze River (MLRYR) basin. However, its ecological benefits for key biotic components, particularly AV communities, remain unclear. To address this knowledge gap, this study utilized Landsat and Sentinel-1 satellite imagery to analyze the dynamic evolution of enclosure aquaculture (EA) and AV in 25 lakes (>10 km2) within the MLRYR basin from 1989 to 2023. A U-Net deep learning model was employed to extract EA data (2016–2023), and a vegetation and bloom extraction algorithm was applied to map different AV groups (1989–2023). Results indicate that by 2023, 88% (22/25) of the lakes had completed EA removal. Over the 34-year period, floating/emergent aquatic vegetation (FEAV) exhibited fluctuating trends, while submerged aquatic vegetation (SAV) demonstrated a significant decline, particularly during the EA demolition phase (2016–2023), when its area sharply decreased from 804.8 km2 to 247.3 km2—a reduction of 69.3%. Spatial comparative analysis further confirmed that SAV degradation was substantially more severe in EA removal areas than in EA retention areas. This study demonstrates that EA demolition, while beneficial for improving water quality, exerts significant short-term negative impacts on AV. These findings highlight the urgent need for lake governance policies to shift from single-objective management toward integrated strategies that equally prioritize water-quality improvement and ecological restoration. Future efforts should enhance targeted restoration in EA removal areas through active vegetation recovery and habitat reconstruction, thereby preventing catastrophic regime shifts to phytoplankton-dominated turbid-water states in lake ecosystems. Full article
30 pages, 14460 KB  
Article
Spatiotemporal Dynamics and Distribution Patterns of Economic Forest Resources in Xinjiang, China, Based on Multi-Source Remote Sensing
by Rong Fu, Jianghua Zheng, Lei Wang, Guobing Zhao, Jiale An, Xinwei Wang, Ke Zhang and Lei Luo
Forests 2026, 17(2), 158; https://doi.org/10.3390/f17020158 - 24 Jan 2026
Viewed by 42
Abstract
Accurate, high-resolution information on economic forest resources, here referring to fruit-tree plantations and economic tree crops, is essential for land-use planning and resource management in arid regions. Xinjiang, China—one of the country’s most important fruit-producing areas—exhibits highly fragmented and heterogeneous distributions of economic [...] Read more.
Accurate, high-resolution information on economic forest resources, here referring to fruit-tree plantations and economic tree crops, is essential for land-use planning and resource management in arid regions. Xinjiang, China—one of the country’s most important fruit-producing areas—exhibits highly fragmented and heterogeneous distributions of economic tree plantations, posing challenges for large-scale and long-term monitoring. In this study, we integrated multi-source remote sensing data by combining multi-temporal Sentinel-2 optical imagery with Sentinel-1 SAR backscatter and texture features to characterize the spatial and temporal distribution patterns of major economic tree plantations from 2019 to 2024. An optimized Random Forest classifier was applied across five key production regions (Aksu, Bazhou, Hotan, Kashgar, and Turpan–Hami). The mapping results achieved overall accuracies ranging from 0.85 to 0.97, with Kappa coefficients between 0.80 and 0.95. The results indicate that economic tree plantations are predominantly distributed along oasis corridors of the Tarim Basin and the alluvial plains on both sides of the Tianshan Mountains, forming belt- and patch-like spatial patterns. While the overall spatial configuration remained relatively stable during the study period, localized expansion was observed, mainly associated with walnut, jujube, and grape plantations. These findings provide insights into the spatial dynamics of economic tree plantations and support land-use optimization and agricultural planning in arid and semi-arid regions. Full article
(This article belongs to the Section Forest Inventory, Modeling and Remote Sensing)
Show Figures

Figure 1

22 pages, 757 KB  
Review
Microglial Maturation and Functional Heterogeneity: Mechanistic Links to Neurodevelopmental Disorders
by Pariya Khodabakhsh and Olga Garaschuk
Int. J. Mol. Sci. 2026, 27(3), 1185; https://doi.org/10.3390/ijms27031185 - 24 Jan 2026
Viewed by 161
Abstract
As the brain’s resident macrophages, microglia on the one side are increasingly recognized as essential players in discrete developmental stages, where immune, metabolic, and activity-derived signals are coordinately integrated to guide brain development. On the other side, the precise temporal and molecular coordination [...] Read more.
As the brain’s resident macrophages, microglia on the one side are increasingly recognized as essential players in discrete developmental stages, where immune, metabolic, and activity-derived signals are coordinately integrated to guide brain development. On the other side, the precise temporal and molecular coordination of microglial maturation is imperative for the structural and functional integrity of the developing central nervous system (CNS). In this review, we synthesize recent data that reposition microglia from a uniform population of immune sentinels to temporally programmed and regionally specialized regulators of circuit maturation. This involves dissecting the embryonic origins and migratory pathways of microglial progenitors in mouse and human systems and illustrating how gradual transcriptional and morphological maturation aligns the biology of microglia with progressive phases of neurogenesis, synaptic fine-tuning, myelination, and vascular stabilization. In addition, we discuss how individual gene mutations, inflammatory insults during perinatal life, and environmental disturbances intersect with these temporal programs to alter microglial phenotypes and compromise circuit formation. With a special emphasis on epilepsy and autism spectrum disorder, often sharing the common etiology, we illustrate how early malfunction of microglia may drive neural network dysfunction. Full article
(This article belongs to the Special Issue Latest Review Papers in Molecular Neurobiology 2025)
Show Figures

Figure 1

31 pages, 3361 KB  
Article
An Earth Observation Data-Driven Investigation of Algal Blooms in Utah Lake: Statistical Analysis of the Effects of Turbidity and Water Temperature
by Kaylee B. Tanner, Anna C. Cardall, Jacob B. Taggart and Gustavious P. Williams
Remote Sens. 2026, 18(3), 394; https://doi.org/10.3390/rs18030394 - 24 Jan 2026
Viewed by 53
Abstract
We analyzed six years (2019–2025) of Sentinel-2 and Moderate Resolution Imaging Spectroradiometer (MODIS) imagery to quantify how turbidity and water temperature relate to algal blooms in Utah Lake. We generated satellite-derived estimates of chlorophyll-a (chl-a), turbidity, and surface temperature at 600 randomly distributed [...] Read more.
We analyzed six years (2019–2025) of Sentinel-2 and Moderate Resolution Imaging Spectroradiometer (MODIS) imagery to quantify how turbidity and water temperature relate to algal blooms in Utah Lake. We generated satellite-derived estimates of chlorophyll-a (chl-a), turbidity, and surface temperature at 600 randomly distributed sample points. Using generalized least squares models, we found that temperature and turbidity explain only a small fraction of the variance in chl-a (temperature coefficients 0.02–0.03; turbidity coefficients −0.18–0.42), and the strength and sign of correlations vary by location. Despite weak linear correlations, we identified a strong nonlinear pattern: 94% of intense bloom events (chl-a > 87 µg/L) occurred when turbidity was below 120 Nephelometric Turbidity Units (NTU), indicating that blooms more often form under low-turbidity conditions. We also found that the first mild blooms of the season (chl-a > 34 µg/L) typically occurred five days after the largest short-term temperature increase (3–12 °C/day) at a given location, but only when blooms first appeared in April. These results suggest that Utah Lake blooms may be light-limited, with turbidity constraining algal growth that would otherwise occur in response to high nutrient levels, while temperature spikes influence early-season bloom initiation. Our findings have direct implications for monitoring and management strategies that target algal blooms on Utah Lake. Full article
(This article belongs to the Section Remote Sensing in Geology, Geomorphology and Hydrology)
Show Figures

Figure 1

21 pages, 11722 KB  
Article
Simultaneous Hyperspectral and Radar Satellite Measurements of Soil Moisture for Hydrogeological Risk Monitoring
by Kalliopi Karadima, Andrea Massi, Alessandro Patacchini, Federica Verde, Claudia Masciulli, Carlo Esposito, Paolo Mazzanti, Valeria Giliberti and Michele Ortolani
Remote Sens. 2026, 18(3), 393; https://doi.org/10.3390/rs18030393 - 24 Jan 2026
Viewed by 79
Abstract
Emerging landslides and severe floods highlight the urgent need to analyse and support predictive models and early warning systems. Soil moisture is a crucial parameter and it can now be determined from space with a resolution of a few tens of meters, potentially [...] Read more.
Emerging landslides and severe floods highlight the urgent need to analyse and support predictive models and early warning systems. Soil moisture is a crucial parameter and it can now be determined from space with a resolution of a few tens of meters, potentially leading to the continuous global monitoring of landslide risk. We address this issue by determining the volumetric water content (VWC) of a testbed in Southern Italy (bare soil with significant flood and landslide hazard) through the comparison of two different satellite observations on the same day. In the first observation (Sentinel-1 mission of the European Space Agency, C-band Synthetic Aperture Radar (SAR)), the back-scattered radar signal is used to determine the VWC from the dielectric constant in the microwave range, using a time-series approach to calibrate the algorithm. In the second observation (hyperspectral PRISMA mission of the Italian Space Agency), the short-wave infrared (SWIR) reflectance spectra are used to calculate the VWC from the spectral weight of a vibrational absorption line of liquid water (wavelengths 1800–1950 nm). As the main result, we obtained a Pearson’s correlation coefficient of 0.4 between the VWC values measured with the two techniques and a separate ground-truth confirmation of absolute VWC values in the range of 0.10–0.30 within ±0.05. This overlap validates that both SAR and hyperspectral data can be well calibrated and mapped with 30 m ground resolution, given the absence of artifacts or anomalies in this particular testbed (e.g., vegetation canopy or cloud presence). If hyperspectral data in the SWIR range become more broadly available in the future, our systematic procedure to synchronise these two technologies in both space and time can be further adapted to cross-validate the global high-resolution soil moisture dataset. Ultimately, multi-mission data integration could lead to quasi-real-time hydrogeological risk monitoring from space. Full article
(This article belongs to the Special Issue Remote Sensing in Geomatics (Second Edition))
Show Figures

Figure 1

Back to TopTop