Polymeric Membranes in Water Treatment: Insights into Contaminant Removal Mechanisms and Advanced Processes †
Abstract
1. Introduction
2. Mechanisms of Contaminant Removal
2.1. Basic Functioning and Types of Polymeric Membranes
- Ultrafiltration (UF): Polyethersulfone (PES) and cellulose acetate (CA) are the typical materials used for UF membranes. PES porous membranes have high thermal resistance and chemical strength to enable the removal of suspended solids, colloids, and pathogens. Cellulose acetate (CA) membranes made from renewable sources provide hydrophilic surfaces minimizing fouling propensity [3,5].
- Nanofiltration (NF): NF membranes are frequently made of polyvinylidene fluoride (PVDF) due to its excellent chemical resistance and fouling-resistant nature. Its compressed structure results in more effective contaminant rejection with a controlled permeability and is good for ion separation and partial desalination [6].
- Reverse Osmosis (RO): Polysulfone (PSU) and polyamide (PA) are typical materials for RO membranes. The mechanical strength and pressure durability of PSU and the selective layer of PA, with high salt and heavy metal rejection, are their critical attributes [7].
- Microfiltration (MF): Typically, PVDF, CA, etc., are used for MF membranes. These membranes have been favored due to their chemical and thermal resistances, whereas CA membranes are hydrophilic and their fouling by organics is less likely [8].
2.2. Antimicrobial Properties of Nanoparticles in Membranes
3. Advanced Techniques in Water Treatment
3.1. Electrochemical Processes
3.2. Membrane Distillation Techniques for Desalination
4. Challenges in Membrane Technologies
4.1. Membrane Fouling and Mitigation Strategies
4.2. Limitations and Future Directions
5. Applications and Comparative Analysis
5.1. Effectiveness in Heavy Metal and Dye Removal
5.2. Advantages and Drawbacks of Wastewater Treatment Methods
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Smith, J.L.; Kumar, P.; Lee, A. Application of polymeric membranes in the purification of water contaminated with dyes. J. Adv. Membr. Sci. 2022, 12, 45–60. [Google Scholar]
- Shukla, B.K.; Teeli, M.A.; Shukla, S.K.; Chandra, R.; Bharti, N.; Singh, U. A Comprehensive Overview of Vital Water Quality Parameters. Lect. Notes Civ. Eng. 2024, 439, 1–20. [Google Scholar]
- Kim, J.Y.; Lee, K.H.; Lee, J.W.; Khan, I.A.; Kim, J.O. Structural and performance variation of PES/PVDF membranes after exposure to the pretreated feed water of CECs. Chemosphere 2023, 335, 139096. [Google Scholar] [CrossRef] [PubMed]
- Johnson, A.B.; Mehta, S.; Wang, Y. Polymeric membranes: A review on their chemical structure and influence on filtration performance. J. Membr. Stud. 2022, 45, 101–115. [Google Scholar]
- Gayatri, R.; Yuliwati, E.; Jaafar, J.; Fizal, A.N.S.; Hossain, M.S.; Zulkifli, M.; Yahaya, A.N.A.; Taweepreda, W. Polymer-based nanocomposite membranes for industrial wastewater treatment: A review. J. Environ. Chem. Eng. 2024, 12, 113276. [Google Scholar] [CrossRef]
- Austria, H.F.M.; Sardome, R.P.; Setiawan, O.; Huang, T.H.; Lei, W.C.; Tian, X.Y.; Hu, C.C.; Lee, K.R.; Lai, J.Y.; Tayo, L.L.; et al. Efficient membrane fouling mitigation in self-cleaning piezoelectric PVDF-graphene loose nanofiltration membranes for sustainable textile wastewater treatment. Sep. Purif. Technol. 2024, 346, 127317. [Google Scholar] [CrossRef]
- Castro, K.; Abejón, R. Removal of Heavy Metals from Wastewaters and Other Aqueous Streams by Pressure-Driven Membrane Technologies: An Outlook on Reverse Osmosis, Nanofiltration, Ultrafiltration and Microfiltration Potential from a Bibliometric Analysis. Membranes 2024, 14, 180. [Google Scholar] [CrossRef]
- Mahlangu, O.T.; Nkambule, T.I.; Mamba, B.B.; Hai, F.I. Strategies for mitigating challenges associated with trace organic compound removal by high-retention membrane bioreactors (HR-MBRs). npj Clean Water 2024, 7, 18. [Google Scholar] [CrossRef]
- Chauhan, M.; Shekhar, S.; Yadav, B.; Garg, V.; Dutt, R.; Sonali; Singh, R.P. Nanoparticles: A promising tool to promote reactive oxygen species in cancer therapy. Curr. Protein Pept. Sci. 2021, 22, 827–830. [Google Scholar] [CrossRef]
- Kamo, A.; Ozcan, A.; Sonmezoglu, O.A.; Sonmezoglu, S. Understanding antibacterial disinfection mechanisms of oxide-based photocatalytic materials. Nanocomposite Nanohybrid Mater. Process. Appl. 2023, 17, 195. [Google Scholar]
- Honarparvar, S.; Zhang, X.; Chen, T.; Alborzi, A.; Afroz, K.; Reible, D. Frontiers of membrane desalination processes for brackish water treatment: A review. Membranes 2021, 11, 246. [Google Scholar] [CrossRef] [PubMed]
- Oddonetto, T.L.; Deemer, E.; Lugo, A.; Cappelle, M.; Xu, P.; Santiago, I.; Walker, W.S. Assessment of salt-free electrodialysis metathesis: A novel process for brine management in brackish water desalination using monovalent selective ion exchange membranes. Desalination 2024, 592, 118160. [Google Scholar] [CrossRef]
- Zhu, H.; Zhang, H. Integration of proton exchange membrane fuel cell with air gap membrane distillation for sustainable electricity and freshwater cogeneration: Performance, influential mechanism, multi-objective optimization and future perspective. Renew. Sustain. Energy Rev. 2024, 199, 114523. [Google Scholar] [CrossRef]
- Saffarimiandoab, F.; Gul, B.Y.; Tasdemir, R.S.; Ilter, S.E.; Unal, S.; Tunaboylu, B.; Menceloglu, Y.Z.; Koyuncu, I. A review on membrane fouling: Membrane modification. Desalination Water Treat. 2021, 216, 47–70. [Google Scholar] [CrossRef]
- Horseman, T.; Yin, Y.; Christie, K.S.; Wang, Z.; Tong, T.; Lin, S. Wetting, scaling, and fouling in membrane distillation: State-of-the-art insights on fundamental mechanisms and mitigation strategies. ACS EST Eng. 2020, 1, 117–140. [Google Scholar] [CrossRef]
- Shukla, B.K.; Sharma, P.K.; Yadav, H.; Singh, S.; Tyagi, K.; Yadav, Y.; Rajpoot, N.K.; Rawat, S.; Verma, S. Advanced membrane technologies for water treatment: Utilization of nanomaterials and nanoparticles in membranes fabrication. J. Nanoparticle Res. 2024, 26, 222. [Google Scholar] [CrossRef]
- Subasinghe, P.; Said, K.A.M.; Rahman, M.R.; Kuok, K.K. Polyvinylidene fluoride gravity-driven membranes modification and membrane fouling: A review. Groundw. Sustain. Dev. 2024, 26, 101215. [Google Scholar] [CrossRef]
- Seah, M.Q.; Chua, S.F.; Ang, W.L.; Lau, W.J.; Mansourizadeh, A.; Thamaraiselvan, C. Advancements in Polymeric Membranes for Challenging Water Filtration Environments: A Comprehensive Review. J. Environ. Chem. Eng. 2024, 12, 112628. [Google Scholar] [CrossRef]
- Harun-Ur-Rashid, M.; Jahan, I.; Foyez, T.; Imran, A.B. Bio-inspired nanomaterials for micro/nanodevices: A new era in biomedical applications. Micromachines 2023, 14, 1786. [Google Scholar] [CrossRef]
- Jadoun, S.; Fuentes, J.P.; Urbano, B.F.; Yáñez, J. A review on adsorption of heavy metals from wastewater using conducting polymer-based materials. J. Environ. Chem. Eng. 2023, 11, 109226. [Google Scholar] [CrossRef]
- Mohamat, R.; Bakar, S.A.; Mohamed, A.; Muqoyyanah, M.; Othman, M.H.D.; Mamat, M.H.; Malek, M.F.; Ahmad, M.K.; Yulkifli, Y.; Ramakrishna, S. Incorporation of graphene oxide/titanium dioxide with different polymer materials and its effects on methylene blue dye rejection and antifouling ability. Environ. Sci. Pollut. Res. 2023, 30, 72446–72462. [Google Scholar] [CrossRef] [PubMed]
- Rajeswari, A.; Jackcina Stobel Christy, E.; Ida Celine Mary, G.; Jayaraj, K.; Pius, A. Cellulose acetate based biopolymeric mixed matrix membranes with various nanoparticles for environmental remediation-A comparative study. J. Environ. Chem. Eng. 2019, 7, 103278. [Google Scholar] [CrossRef]
- Safarpour, M.; Vatanpour, V.; Khataee, A. Preparation and characterization of graphene oxide/TiO2 blended PES nanofiltration membrane with improved antifouling and separation performance. Desalination 2016, 393, 65–78. [Google Scholar] [CrossRef]
- Ngang, H.; Ooi, B.; Ahmad, A.; Lai, S. Preparation of PVDF–TiO2 mixed-matrix membrane and its evaluation on dye adsorption and UV-cleaning properties. Chem. Eng. J. 2012, 197, 359–367. [Google Scholar] [CrossRef]
- Zinadini, S.; Zinatizadeh, A.A.; Rahimi, M.; Vatanpour, V.; Zangeneh, H. Preparation of a novel antifouling mixed matrix PES membrane by embedding graphene oxide nanoplates. J. Membr. Sci. 2014, 453, 292–301. [Google Scholar] [CrossRef]
- Kuvarega, A.T.; Khumalo, N.; Dlamini, D.; Mamba, B.B. Polysulfone/N, Pd co-doped TiO2 composite membranes for photocatalytic dye degradation. Sep. Purif. Technol. 2018, 191, 122–133. [Google Scholar] [CrossRef]
- Gong, W.; Bai, L.; Liang, H. Membrane-based technologies for removing emerging contaminants in urban water systems: Limitations, successes, and future improvements. Desalination 2024, 590, 117974. [Google Scholar] [CrossRef]
- Gupta, B.; Gupta, A.K.; Bhatnagar, A. Treatment of pharmaceutical wastewater using photocatalytic reactor and hybrid system integrated with biofilm based process: Mechanistic insights and degradation pathways. J. Environ. Chem. Eng. 2023, 11, 109141. [Google Scholar] [CrossRef]
- Robertson, M.; Jameson, L. The Future of Membrane Technologies in Water Treatment. J. Adv. Filtr. Syst. 2019, 14, 400–412. [Google Scholar]
Sample | Dyes | Process | Polymer | Nanomaterial | Additive | % Removal | Ref. |
---|---|---|---|---|---|---|---|
Wastewater | methylene blue (MB) | UF | CA/PSU | - | - | 82 | [22] |
Al2O3 | 91 | ||||||
nZVI | 94 | ||||||
Synthetic | eosin yellow | PSU | - | 67 | [23] | ||
TiO2 | 87–97 | ||||||
reactive green 19 (RG19) | NF | PES | - | PVP | 93.2 | [24] | |
GO | >90 | ||||||
TiO2 | >90 | ||||||
GO-TiO2 | 99.4 | ||||||
direct yellow 12 (DY12) | - | 89 | [25] | ||||
GO | >90 | ||||||
TiO2 | >90 | ||||||
GO-TiO2 | 95.4 | ||||||
direct red 16 (DR16) | - | 90 | [22] | ||||
GO | 99 | ||||||
reactive blue 21 (RB21) | - | 61.4 | [26] | ||||
GO | 69.7 | ||||||
TiO2 | 73.5 | ||||||
GO-TiO2 | 81.4 |
Sr. No | Technology | Key Benefits | Challenges |
---|---|---|---|
1 | Activated Sludge Process |
| Requires careful monitoring of sludge-concentration, high operational costs |
2 | Bleaching and Chlorination |
| Corrosive chlorine gas is difficult to manage, hazardous in nature |
3 | Coagulation |
| Generates a large volume of sludge |
4 | Rotating Biological Contactors (RBC) |
| Requires substantial space, challenging to operate in cold environments |
5 | Sputtering Filters |
| High initial cost, rotating arm obstruction, and increased odor production |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shukla, B.K.; Parashar, B.; Patel, T.; Gupta, Y.; Verma, S.; Singh, S. Polymeric Membranes in Water Treatment: Insights into Contaminant Removal Mechanisms and Advanced Processes. Eng. Proc. 2025, 87, 69. https://doi.org/10.3390/engproc2025087069
Shukla BK, Parashar B, Patel T, Gupta Y, Verma S, Singh S. Polymeric Membranes in Water Treatment: Insights into Contaminant Removal Mechanisms and Advanced Processes. Engineering Proceedings. 2025; 87(1):69. https://doi.org/10.3390/engproc2025087069
Chicago/Turabian StyleShukla, Bishnu Kant, Bhupender Parashar, Tanu Patel, Yashasvi Gupta, Shreshth Verma, and Shrishti Singh. 2025. "Polymeric Membranes in Water Treatment: Insights into Contaminant Removal Mechanisms and Advanced Processes" Engineering Proceedings 87, no. 1: 69. https://doi.org/10.3390/engproc2025087069
APA StyleShukla, B. K., Parashar, B., Patel, T., Gupta, Y., Verma, S., & Singh, S. (2025). Polymeric Membranes in Water Treatment: Insights into Contaminant Removal Mechanisms and Advanced Processes. Engineering Proceedings, 87(1), 69. https://doi.org/10.3390/engproc2025087069