Enhancing Urban Mobility: Integrating Multi-LIDAR Tracking and Adaptive Motion Planning for Autonomous Vehicle Navigation in Complex Environments †
Abstract
1. Introduction
2. Context and Problem Formulation
3. Solution and Methodology
s(t) = ∑ aiti
i= 0
4. Simulation and Results
5. Limitations of the System and Challenges in the Environment
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lee, G.; Kim, S.; Seo, D.; Kang, Y. Inverse Reinforcement Learning with Dynamic Occupancy Grid Map for Urban Local Path Planning: A CNN Model Approach. In Proceedings of the 2024 IEEE Intelligent Vehicles Symposium (IV), Jeju Island, Republic of Korea, 15 July 2024; pp. 871–877. [Google Scholar] [CrossRef]
- Chen, Z.; Zhang, K.; Chen, H.; Wang, M.Y.; Zhang, W.; Yu, H. DORF: A Dynamic Object Removal Framework for Robust Static LiDAR Mapping in Urban Environments. IEEE Robot. Autom. Lett. 2023, 8, 7922–7929. [Google Scholar] [CrossRef]
- Kästner, L.; Zhao, X.; Shen, Z.; Lambrecht, J. A Hybrid Hierarchical Navigation Architecture for Highly Dynamic Environments Using Time-Space Optimization. In Proceedings of the 2023 IEEE/SICE International Symposium on System Integration (SII), Atlanta, GA, USA, 17–20 January 2023; pp. 1–8. [Google Scholar] [CrossRef]
- Zarrabi, N.; Fesharakifard, R.; Menhaj, M.B. Dynamic reconfiguration of costmap parameters with Fuzzy controllers to enhance path planning. In Proceedings of the 2022 10th RSI International Conference on Robotics and Mechatronics (ICRoM), Tehran, Iran, 22–24 November 2022; pp. 427–432. [Google Scholar] [CrossRef]
- Verma, S.C. Safe Navigation of a Non-Holonomic Robot with Low Computational-power in a 2D Dynamic Environment. In Proceedings of the 2022 Australian & New Zealand Control Conference (ANZCC), Gold Coast, Australia, 5 December 2022; pp. 13–17. [Google Scholar] [CrossRef]
- Chen, Y.; Sun, S.; Yin, H.; Ang, M.H. Exploring the Effect of 3D Object Removal using Deep Learning for LiDAR-based Mapping and Long-term Vehicular Localization. In Proceedings of the 2022 IEEE 25th International Conference on Intelligent Transportation Systems (ITSC), Macau, China, 8–12 October 2022; pp. 1730–1735. [Google Scholar] [CrossRef]
- Choudhary, A.; Kobayashi, Y.; Arjonilla, F.J.; Nagasaka, S.; Koike, M. Evaluation of mapping and path planning for non-holonomic mobile robot navigation in narrow pathway for agricultural application. In Proceedings of the 2021 IEEE/SICE International Symposium on System Integration (SII), Iwaki, Fukushima, Japan, 11–14 January 2021; pp. 17–22. [Google Scholar] [CrossRef]
- Al-Mashhadani, Z.; Mainampati, M.; Chandrasekaran, B. Autonomous Exploring Map and Navigation for an Agricultural Robot. In Proceedings of the 2020 3rd International Conference on Control and Robots (ICCR), Tokyo, Japan, 26–29 December 2020; pp. 73–78. [Google Scholar] [CrossRef]
- Laghmara, H.; Boudali, M.-T.; Laurain, T.; Ledy, J.; Orjuela, R.; Lauffenburger, J.-F.; Basset, M. Obstacle Avoidance, Path Planning and Control for Autonomous Vehicles. In Proceedings of the 2019 IEEE Intelligent Vehicles Symposium (IV), Paris, France, 09–12 June 2019; pp. 529–534. [Google Scholar] [CrossRef]
- Chen, D.; Zhuang, M.; Zhong, X.; Wu, W.; Liu, Q. RSPMP: Real-time semantic perception and motion planning for autonomous navigation of unmanned ground vehicle in off-road environments. Appl. Intell. 2023, 53, 4979–4995. [Google Scholar] [CrossRef]
- Zhang, J.; Ding, Y.; Liu, Z. OccFusion: Depth Estimation Free Multi-sensor Fusion for 3D Occupancy Prediction. In Computer Vision–ACCV 2024. ACCV 2024. Lecture Notes in Computer Science; Cho, M., Laptev, I., Tran, D., Yao, A., Zha, H., Eds.; Springer: Singapore, 2025; Volume 15481. [Google Scholar] [CrossRef]
- Zhu, H.; Zhang, Z.; Zhao, J.; Duan, H.; Ding, Y.; Xiao, X.; Yuan, J. Scene reconstruction techniques for autonomous driving: A review of 3D Gaussian splatting. Artif. Intell. Rev. 2025, 58, 30. [Google Scholar] [CrossRef]
- Liu, C. Quadrotor Trajectory Tracking and Simultaneous Localization and Mapping Implementation in CoppeliaSim. J. Inst. Eng. India Ser. C 2024, 106, 529–540. [Google Scholar] [CrossRef]
- Aburaya, A.; Selamat, H.; Muslim, M.T. Review of vision-based reinforcement learning for drone navigation. Int. J. Intell. Robot Appl. 2024, 8, 974–992. [Google Scholar] [CrossRef]
- Saha, A.; Dhara, B.C. 3D LiDAR-based obstacle detection and tracking for autonomous navigation in dynamic environments. Int. J. Intell. Robot Appl. 2024, 8, 39–60. [Google Scholar] [CrossRef]
- Bakir, M.; Youssefi, M.A.; Dakir, R.; El Wafi, M. Enhancing the PRM Algorithm: An Innovative Method to Overcome Obstacles in Self- Driving Car Path Planning. Int. Rev. Autom. Control (IREACO) 2024, 17, 132–140. [Google Scholar] [CrossRef]
- Tan, A.H.; Nejat, G. Enhancing Robot Task Completion Through Environment and Task Inference: A Survey from the Mobile Robot Per- spective. J. Intell. Robot Syst. 2022, 106, 73. [Google Scholar] [CrossRef]
- Bahani, A.; Ech-Chhibat, M.E.; Samri, H.; Zahiri, L.; Mansouri, K. Intelligent Cutting Force Control by a Cooperative Multi-Robot System: Modeling and Simulation in a Milling Application. Int. J. Eng. Appl. (IREA) 2024, 12, 76–86. [Google Scholar] [CrossRef]
- Bui, T.L.; Hoang, G. Path Tracking Algorithm with Wheel Radii Estimation for Automatic Guided Vehicle Based on Adaptive Backstepping Control Method. Int. J. Eng. Appl. (IREA) 2024, 12, 210–217. [Google Scholar] [CrossRef]
- Zourari, A.; Youssefi, M.A.; Youssef, Y.; Dakir, R. Reinforcement Q-Learning for Path Planning of Unmanned Aerial Vehicles (UAVs) in Unknown Environments. Int. Rev. Autom. Control (IREACO) 2023, 16, 253–259. [Google Scholar] [CrossRef]
- El Wafi, M.; Youssefi, M.A.; Dakir, R.; Bakir, M. Intelligent Robot in Unknown Environments: Walk Path Using Q-Learning and Deep Q-Learning. Automation 2025, 6, 12. [Google Scholar] [CrossRef]
- Yu, M.-Y.; Vasudevan, R.; Johnson-Roberson, M. Occlusion-Aware Risk Assessment for Autonomous Driving in Urban Environments. IEEE Robot. Autom. Lett. 2019, 4, 2235–2241. [Google Scholar] [CrossRef]





| Scenario | Collision Probability (%) | Reaction Time (s) | Action Taken | Longitudinal Jerk (m/s3) | Lateral Jerk (m/s3) | Collision Probability (%) |
|---|---|---|---|---|---|---|
| Intersection with Pedestrians | 15 | 2.0 | Speed reduction | 0.02 | 0.01 | 15 |
| Vehicle in Front | 30 | 3.5 | Trajectory change | 0.03 | 0.02 | 30 |
| Stationary Vehicle | 5 | 1.2 | Avoidance turns | 0.01 | 0.01 | 5 |
| Scenario without Obstacles | 0 | 0.0 | Optimal trajectory | 0.0 | 0.0 | 0 |
| Time (s) | Longitudinal Jerk (m/s3) | Lateral Jerk (m/s3) |
|---|---|---|
| 0 | 0.02 | 0.01 |
| 10 | 0.03 | 0.02 |
| 20 | 0.01 | 0.01 |
| 30 | 0.02 | 0.03 |
| 40 | 0.01 | 0.01 |
| Method | Collision Probability (%) | Reaction Time (s) | Average Jerk (m/s3) | Replanning Rate (/min) |
|---|---|---|---|---|
| A* (A star) + PID (Static) | 27.6 | 3.4 | 0.035 | 3.2 |
| Proposed Method | 9.8 | 2.1 | 0.020 | 7.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bakir, M.; Youssefi, M.A.; Dakir, R.; El Wafi, M.; El Koudia, Y. Enhancing Urban Mobility: Integrating Multi-LIDAR Tracking and Adaptive Motion Planning for Autonomous Vehicle Navigation in Complex Environments. Eng. Proc. 2025, 112, 60. https://doi.org/10.3390/engproc2025112060
Bakir M, Youssefi MA, Dakir R, El Wafi M, El Koudia Y. Enhancing Urban Mobility: Integrating Multi-LIDAR Tracking and Adaptive Motion Planning for Autonomous Vehicle Navigation in Complex Environments. Engineering Proceedings. 2025; 112(1):60. https://doi.org/10.3390/engproc2025112060
Chicago/Turabian StyleBakir, Mohamed, My Abdelkader Youssefi, Rachid Dakir, Mouna El Wafi, and Younes El Koudia. 2025. "Enhancing Urban Mobility: Integrating Multi-LIDAR Tracking and Adaptive Motion Planning for Autonomous Vehicle Navigation in Complex Environments" Engineering Proceedings 112, no. 1: 60. https://doi.org/10.3390/engproc2025112060
APA StyleBakir, M., Youssefi, M. A., Dakir, R., El Wafi, M., & El Koudia, Y. (2025). Enhancing Urban Mobility: Integrating Multi-LIDAR Tracking and Adaptive Motion Planning for Autonomous Vehicle Navigation in Complex Environments. Engineering Proceedings, 112(1), 60. https://doi.org/10.3390/engproc2025112060

