You are currently viewing a new version of our website. To view the old version click .
Chemistry Proceedings
  • Abstract
  • Open Access

6 July 2021

Graphene Nanoflakes Incorporating Natural Phytochemicals Containing Catechols as Functional Material for Sensors †

,
,
and
Faculty of Bioscience and Technology for Food, Agriculture and Environment University of Teramo, Via Renato Balzarini 1, 64100 Teramo, Italy
*
Author to whom correspondence should be addressed.
Presented at the 1st International Electronic Conference on Chemical Sensors and Analytical Chemistry, 1–15 July 2021; Available online: https://csac2021.sciforum.net/.
This article belongs to the Proceedings The 1st International Electronic Conference on Chemical Sensors and Analytical Chemistry

Abstract

Phytochemical products start to be employed to assist 2D nanomaterials exfoliation. However, a lack of studies regarding the molecules involved and their capacity to give rise to functional materials is evident. In this work, a novel green liquid-phase exfoliation strategy (LPE) is proposed, wherein a flavonoid namely catechin (CT) exclusively assists the exfoliation of bulk graphite in conductive water-soluble graphene nanoflakes (GF). Physicochemical and electrochemical methods have been employed to characterize the morphological, structural, and electrochemical features of the GF-CT. Surprisingly, the obtained GF-CT integrates well-defined electroactive quinoid adducts. The resulting few-layers graphene flakes intercalated with CT aromatic skeleton ensure strict electrical contact among graphene sheets, whereas the fully reversible quinoid electrochemistry (ΔE = 28 mV, Ip, a/Ip, c = ~1) is attributed to the residual catechol moieties, which work as an electrochemical mediator. The GF-CT intimate electrochemistry is generated directly during the LPE of graphite, not requiring any modification or electro-polymerization steps, resulting in stable (8 months) and reproducible material. The electrocatalytic activity has been proven towards hydrazine (HY) and β-nicotinamide adenine dinucleotide (NADH), a pollutant and a coenzyme, respectively. High sensitivity in extended linear ranges (HY: LOD = 0.1 µM, L.R. 0.5–150 µM; NADH: LOD = 0.6 µM, L.R. 2.5–200 µM) at low overpotential (+0.15 V) was obtained using amperometry, avoiding electrode-fouling. Improved performances, compared with graphite commercial electrodes and graphene exfoliated with a conventional surfactant, were obtained. The GF-CT was successfully used to perform the detection of HY and NADH (recoveries 94–107%, RSD ≤ 8%) in environmental and biological matrices, proving the material exploitability even in challenging analytical applications. On course studies aim to combine the intrinsic conductivity of the GF-CT with flexible substrates, in order to construct flexible electrodes/devices able to house GF-CT-exclusively composed conductive films. In our opinion, the proposed GF-CT elects itself as a cost-effective and sustainable material, particularly captivating in the (bio)sensoristics scenario.

Supplementary Materials

The following are available online at https://www.mdpi.com/article/10.3390/CSAC2021-10619/s1.
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Article Metrics

Citations

Article Access Statistics

Multiple requests from the same IP address are counted as one view.