Application of Eugenol-Derived Azo Dyes on Natural Textile Fabrics †
Abstract
1. Introduction
2. Results and Discussion
2.1. Sythesis and pH-Dependent Absorption Spectra of Dyes 1–3
2.2. Textile Application by Exhaustion Dyeing
3. Experimental Procedure
3.1. UV/Vis Absorption of the Azo Dyes 1–3
3.2. Pretreatment
3.3. Exhaustion Dyeing
3.4. Colorimetric Characterization of the Textiles and Validation Tests
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mouro, C.; Gomes, A.P.; Costa, R.V.; Moghtader, F.; Gouveia, I.C. The sustainable bioactive dyeing of textiles: A novel strategy using bacterial pigments, natural antibacterial ingredients, and deep eutectic solvents. Gels 2023, 9, 800. [Google Scholar] [CrossRef] [PubMed]
- Rahaman, T.; Khan, S.H. Green merchandising of textiles and apparel in a circular economy: Recent trends, framework, challenges and future prospects towards sustainability. J. Open Innov. Technol. Mark. Complex. 2025, 11, 100457. [Google Scholar] [CrossRef]
- Haq, H.A.; Javed, T.; Abid, M.A.; Zafar, S.; Din, M.I. Adsorption of crystal violet dye from synthetic textile effluents by utilizing wheat bran (Triticum aestivum). Desal. Water Treat. 2021, 224, 395–406. [Google Scholar] [CrossRef]
- Tyagi, S.; Kapoor, R.T.; Singh, R.; Shah, M.P. Insights on microbial enzymes mediated biodegradation of azo dyes: A sustainable strategy for environment clean up. Bioremediat. J. 2025, 1–43. [Google Scholar] [CrossRef]
- Haque, M.M.; Haque, M.M.; Mosharaf, M.K.; Islam, M.S.; Islam, M.M.; Hasan, M.; Molla, A.H.; Haque, M.A. Biofilm-mediated decolorization, degradation and detoxification of synthetic effluent by novel biofilm-producing bacteria isolated from textile dyeing effluent. Environ. Pollut. 2022, 314, 120237. [Google Scholar] [CrossRef] [PubMed]
- Chung, K.T. Azo dyes and human health: A review. J. Environ. Sci. Health 2016, 34, 233–261. [Google Scholar] [CrossRef] [PubMed]
- Vespignani, L.; Bonanni, M.; Marradi, M.; Pizzo, B.; Bianchini, R.; Goli, G. Naturalized dyes: A new opportunity for the wood coloring. Polymers 2023, 15, 3632. [Google Scholar] [CrossRef] [PubMed]
- Alegbe, E.O.; Uthman, T.O. A review of history, properties, classification, applications and challenges of natural and synthetic dyes. Heliyon 2024, 10, e33646. [Google Scholar] [CrossRef] [PubMed]
- Sengupta, S.; Bhowal, J. Characterization of a blue-green pigment extracted from Pseudomonas aeruginosa and its application in textile and paper dyeing. Environ. Sci. Pollut. Res. 2023, 30, 30343–30357. [Google Scholar] [CrossRef] [PubMed]
- Silva, M.V.; Lima, A.C.A.; Silva, M.G.; Cateano, V.F.; Andrade, M.F.; Silva, R.G.C.; Filho, L.E.P.T.M.; Silva, I.D.L.; Vinhas, G.M. Clove essential oil and eugenol: A review of their significance and uses. Food Biosci. 2024, 62, 105112. [Google Scholar] [CrossRef]
- Chakraborty, J.N. Introduction to dyeing of textiles. In Fundamentals and Practices in Colouration of Textiles; Chakraborty, J.N., Ed.; Woodhead Publishing: Delhi, India, 2010; pp. 1–10. [Google Scholar]
- Coelho, J.R.A.; Fernandes, M.J.G.; Gonçalves, M.S.T. New azo carboxylic dyes derived from eugenol: Synthesis and preliminary application to polyamide. Chem. Proc. 2023, 14, 56. [Google Scholar] [CrossRef]
- Pan, H.; Zhao, T.; Xu, L.; Shen, Y.; Wang, L.; Ding, Y. Preparation of novel chitosan derivatives and applications in functional finishing of textiles. Int. J. Biol. Macromol. 2020, 153, 971–976. [Google Scholar] [CrossRef] [PubMed]
- Teli, M.D.; Sheikh, J.; Shastrakar, P. Exploratory investigation of chitosan as mordant for eco-friendly antibacterial printing of cotton with natural dyes. J. Text. 2013, 2013, 320510. [Google Scholar] [CrossRef]
- Oliveira, C.S.; Costa, A.; Mendanha, D.; Macedo, T.; Moreira, J.; Oliveira, J.A.S.A.; Bernardes, B.G.; Silva, C.J.; Tavaria, F.K. Eucalyptus-enhanced cotton: Pretreatment and bioactive coating strategies for the development of sustainable textiles with antimicrobial and antioxidant activities for skin applications. ACS Appl. Mater. Interfaces 2025, 17, 35009–35022. [Google Scholar] [CrossRef] [PubMed]
- Ganesh, K.; Soumen, R.; Ravichandran, Y.; Janarthanan. Dynamic approach to predict pH profiles of biologically relevant buffers. Biochem. Biophys. Rep. 2017, 9, 121–127. [Google Scholar] [CrossRef] [PubMed]


| Dye | pH 3 | pH 5 | pH 7 | pH 8 | ||||
|---|---|---|---|---|---|---|---|---|
| λmax | log ε | λmax | log ε | λmax | log ε | λmax | log ε | |
| 1 | 339 | 3.92 | 339 | 3.93 | 340 | 3.96 | 341 | 4.25 |
| 2 | 357 | 4.07 | 348 | 3.86 | 345 | 3.98 | 346 | 4.29 |
| 3 | 347 | 3.35 | 346 | 3.97 | 345 | 4.00 | 347 | 4.29 |
| Dye | Untreated | Chitosan | ||
|---|---|---|---|---|
| CO | WO | CO-CS | WO-CS | |
| 1 K/S ± SD | ![]() 0.78 ± 0.01 | ![]() 2.64 ± 0.58 | ![]() 0.31 ± 0.01 | ![]() 2.65 ± 0.35 |
| 2 K/S ± SD | ![]() 0.55 ± 0.01 | ![]() 5.91 ± 0.21 | ![]() 0.50 ± 0.01 | ![]() 4.95 ± 0.21 |
| 3 K/S ± SD | ![]() 0.98 ± 0.01 | ![]() 3.14 ± 0.06 | ![]() 0.50 ± 0.01 | ![]() 5.36 ± 0.22 |
| Dye | L* ± SD | a* ± SD | b* ± SD | |||
|---|---|---|---|---|---|---|
| WO | WO-CS | WO | WO-CS | WO | WO-CS | |
| 1 | 71.83 ± 0.50 | 71.49 ± 0.04 | 13.11 ± 0.93 | 14.72 ± 0.37 | 31.33 ± 0.64 | 33.16 ± 0.53 |
| 2 | 57.60 ± 0.08 | 63.81 ± 0.71 | 27.24 ± 0.08 | 19.15 ± 0.04 | 37.74 ± 0.57 | 38.03 ± 0.26 |
| 3 | 68.63 ± 0.66 | 60.34 ± 0.44 | 14.44 ± 0.10 | 20.70 ± 0.44 | 33.03 ± 0.35 | 35.61 ± 0.08 |
| Dye | Washing Fastness | Light Fastness | ||||||
|---|---|---|---|---|---|---|---|---|
| CO | WO | CO-CS | WO-CS | CO | WO | CO-CS | WO-CS | |
| 1 | 1 | 1 | 2 | 1 | 4 | 4 | 3–4 | 4 |
| 2 | 1 | 1 | 1 | 1 | 4 | 4 | 3–4 | 4 |
| 3 | 1 | 1 | 2 | 1 | 4 | 4 | 4 | 3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mendes, F.D.P.; Fernandes, A.M.; Silva, C.J.; Gonçalves, M.S.T. Application of Eugenol-Derived Azo Dyes on Natural Textile Fabrics. Chem. Proc. 2025, 18, 14. https://doi.org/10.3390/ecsoc-29-26669
Mendes FDP, Fernandes AM, Silva CJ, Gonçalves MST. Application of Eugenol-Derived Azo Dyes on Natural Textile Fabrics. Chemistry Proceedings. 2025; 18(1):14. https://doi.org/10.3390/ecsoc-29-26669
Chicago/Turabian StyleMendes, Filipa Daniela Pedroso, Ana Margarida Fernandes, Carla Joana Silva, and Maria Sameiro Torres Gonçalves. 2025. "Application of Eugenol-Derived Azo Dyes on Natural Textile Fabrics" Chemistry Proceedings 18, no. 1: 14. https://doi.org/10.3390/ecsoc-29-26669
APA StyleMendes, F. D. P., Fernandes, A. M., Silva, C. J., & Gonçalves, M. S. T. (2025). Application of Eugenol-Derived Azo Dyes on Natural Textile Fabrics. Chemistry Proceedings, 18(1), 14. https://doi.org/10.3390/ecsoc-29-26669













