99mTc-Selenium-NPs as SPECT Tracers: Radio Synthesis and Biological Evaluation †
Abstract
:1. Introduction
2. Material and Methods
2.1. Biosynthesis of Se-NPs
2.2. Radiolabelling of Selenium Nanoparticles
2.3. Radiochemical Yield of [99mTc]TcSe-NPs
2.4. In Vivo Biological Studies
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, Y.; Chen, H.; Shi, J. In vivo bio-safety evaluations and diagnostic/therapeutic applications of chemically designed mesoporous silica nanoparticles. Adv. Mater. 2013, 25, 3144–3176. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.; Huang, S. Magnetic nanoparticles in cancer diagnosis, drug delivery and treatment. Mol. Clin. Oncol. 2017, 7, 738–746. [Google Scholar] [CrossRef] [PubMed]
- Babu, A.; Templeton, A.K.; Munshi, A.; Ramesh, R. Nanoparticle-based drug delivery for therapy of lung cancer: Progress and challenges. J. Nanomater. 2013, 2013, 14. [Google Scholar] [CrossRef]
- Van Vlerken, L.E.; Amiji, M.M. Multi-functional polymeric nanoparticles for tumour-targeted drug delivery. Expert Opin. Drug Deliv. 2006, 3, 205–216. [Google Scholar] [CrossRef] [PubMed]
- Weingart, J.; Vabbilisetty, P.; Sun, X.L. Membrane mimetic surface functionalization of nanoparticles: Methods and applications. Adv. Colloid Interface Sci. 2013, 197, 68–84. [Google Scholar] [CrossRef] [PubMed]
- Liu, S. Bifunctional coupling agents for radiolabeling of biomolecules and target-specific delivery of metallic radionuclides. Adv. Drug Deliv. Rev. 2008, 60, 1347–1370. [Google Scholar] [CrossRef] [PubMed]
- Sgouros, G.; Bodei, L.; McDevitt, M.R.; Nedrow, J.R. Radiopharmaceutical therapy in cancer: Clinical advances and challenges. Nat. Rev. Drug Discov. 2020, 19, 589–608. [Google Scholar] [CrossRef] [PubMed]
- Sun, T.; Zhang, Y.S.; Pang, B.; Hyun, D.C.; Yang, M.; Xia, Y. Engineered nanoparticles for drug delivery in cancer therapy. Angew. Chem. Int. Ed. 2014, 53, 12320–12364. [Google Scholar] [CrossRef]
- Veiseh, O.; Gunn, J.W.; Zhang, M. Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging. Adv. Drug Deliv. Rev. 2010, 62, 284–304. [Google Scholar] [CrossRef]
- Roy, I.; Krishnan, S.; Kabashin, A.V.; Zavestovskaya, I.N.; Prasad, P.N. Transforming nuclear medicine with nanoradiopharmaceuticals. ACS Nano 2022, 16, 5036–5061. [Google Scholar] [CrossRef]
- Maccora, D.; Dini, V.; Battocchio, C.; Fratoddi, I.; Cartoni, A.; Rotili, D.; Castagnola, M.; Faccini, R.; Bruno, I.; Scotognella, T.; et al. Gold nanoparticles and nanorods in nuclear medicine: A mini-review. Appl. Sci. 2019, 9, 3232. [Google Scholar] [CrossRef]
- Pijeira, M.S.O.; Viltres, H.; Kozempel, J.; Sakmár, M.; Vlk, M.; İlem-Özdemir, D.; Ekinci, M.; Srinivasan, S.; Rajabzadeh, A.R.; Ricci-Junior, E.; et al. Radiolabeled nanomaterials for biomedical applications: Radiopharmacy in the era of nanotechnology. EJNMMI Radiopharm. Chem. 2022, 7, 8. [Google Scholar] [CrossRef]
- Bharti, C.; Nagaich, U.; Pal, A.K.; Gulati, N. Mesoporous silica nanoparticles in target drug delivery system: A review. Int. J. Pharm. Investig. 2015, 5, 124. [Google Scholar] [CrossRef] [PubMed]
- Varani, M.; Campagna, G.; Bentivoglio, V.; Serafinelli, M.; Martini, M.L.; Galli, F.; Signore, A. Synthesis and biodistribution of 99mTc-labeled PLGA nanoparticles by microfluidic technique. Pharmaceutics 2021, 13, 1769. [Google Scholar] [CrossRef] [PubMed]
- Eldin, S.S.E.; Rashed, H.M.; Hassan, A.H.; Salem, H.F.; Sakr, T.M. Multifunctional 99mTc-5-azacitidine Gold Nanoparticles: Formulation, In Vitro Cytotoxicity, Radiosynthesis, and In Vivo Pharmacokinetic Study. Curr. Drug Deliv. 2023, 20, 387–399. [Google Scholar] [PubMed]
- Türker, S.; Özer, A.Y. Radiopharmacology and pharmacokinetic evaluation of some radiopharmaceuticals. FABAD J. Pharm. Sci. 2005, 30, 204. [Google Scholar]
- Nokkaew, N.; Sliiratori, S.; Gonlachanvit, S.; Chaiwatanarat, T.; Nasing, T.; Chaiseri, S.; Sirisansaneeyakul, S.; Kaniuigsukkasem, V. Evaluation of the First Radiolabeled 99m, Tc-Jerusalem Artichoke-Containing Snack Bar on Gastric Emptying and Satiety in Healthy Female Volunteers. J. Med. Assoc. Thail. 2018, 101, 1–15. [Google Scholar]
- Feng, Q.; Liu, Y.; Huang, J.; Chen, K.; Huang, J.; Xiao, K. Uptake, distribution, clearance, and toxicity of iron oxide nanoparticles with different sizes and coatings. Sci. Rep. 2018, 8, 2082. [Google Scholar] [CrossRef]
- Duan, H.; Wang, D.; Li, Y. Green chemistry for nanoparticle synthesis. Chem. Soc. Rev. 2015, 44, 5778–5792. [Google Scholar] [CrossRef]
- Mansouri-Tehrani, H.A.; Keyhanfar, M.; Behbahani, M.; Dini, G. Synthesis and characterization of algae-coated selenium nanoparticles as a novel antibacterial agent against Vibrio harveyi, a Penaeus vannamei pathogen. Aquaculture 2021, 534, 736260. [Google Scholar] [CrossRef]
- Snehalatha, M.; Venugopal, K.; Saha, R.N.; Babbar, A.K.; Sharma, R.K. Etoposide loaded PLGA and PCL nanoparticles II: Biodistribution and pharmacokinetics after radiolabeling with Tc-99m. Drug Deliv. 2008, 15, 277–287. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Singh, A.K.; Faheem, M.; Jaiswal, A.; Ponnala, M.; Gambhir, S.; Dixit, M. 99mTc-Selenium-NPs as SPECT Tracers: Radio Synthesis and Biological Evaluation. Chem. Proc. 2023, 14, 54. https://doi.org/10.3390/ecsoc-27-16172
Singh AK, Faheem M, Jaiswal A, Ponnala M, Gambhir S, Dixit M. 99mTc-Selenium-NPs as SPECT Tracers: Radio Synthesis and Biological Evaluation. Chemistry Proceedings. 2023; 14(1):54. https://doi.org/10.3390/ecsoc-27-16172
Chicago/Turabian StyleSingh, Akhilesh Kumar, Mohd. Faheem, Amit Jaiswal, Malleswari Ponnala, Sanjay Gambhir, and Manish Dixit. 2023. "99mTc-Selenium-NPs as SPECT Tracers: Radio Synthesis and Biological Evaluation" Chemistry Proceedings 14, no. 1: 54. https://doi.org/10.3390/ecsoc-27-16172
APA StyleSingh, A. K., Faheem, M., Jaiswal, A., Ponnala, M., Gambhir, S., & Dixit, M. (2023). 99mTc-Selenium-NPs as SPECT Tracers: Radio Synthesis and Biological Evaluation. Chemistry Proceedings, 14(1), 54. https://doi.org/10.3390/ecsoc-27-16172