error_outline You can access the new MDPI.com website here. Explore and share your feedback with us.
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (137)

Search Parameters:
Keywords = ionotropic gelation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1346 KB  
Article
Alginate-Based Beads Containing Artemisia absinthium L. Extract as Innovative Ingredients for Baked Products
by Alessandro Candiani, Giada Diana, Vincenzo Disca, Yassine Jaouhari, Margherita Stampini, Stefano Salamone, Federica Pollastro, Jessica Baima, Flavia Prodam, Sabrina Tini, Marta Bertolino, Lorella Giovannelli, Lorena Segale, Jean Daniel Coïsson and Marco Arlorio
Gels 2026, 12(1), 43; https://doi.org/10.3390/gels12010043 - 1 Jan 2026
Viewed by 129
Abstract
Artemisia absinthium L. is a medicinal plant well known for the bitterness of its sesquiterpenoids. To mask its intense taste while preserving these active compounds, an ethanolic extract (AAE) was prepared, and two microencapsulation techniques (spray drying and ionotropic gelation) were investigated under [...] Read more.
Artemisia absinthium L. is a medicinal plant well known for the bitterness of its sesquiterpenoids. To mask its intense taste while preserving these active compounds, an ethanolic extract (AAE) was prepared, and two microencapsulation techniques (spray drying and ionotropic gelation) were investigated under different process conditions. The best-performing formulation was selected for larger-scale production and a characterisation of the microparticles (MPs) was carried out. MPs were then incorporated into baked products (biscuits), which were subsequently characterised for proximate composition, total phenolic content (TPC) and antioxidant activity (AA). Bitter compounds were quantified through HPLC-DAD. A panel test was conducted on 50 volunteers, which compiled a satisfactory questionnaire. Ionotropic gelation proved to be the most suitable technique for producing AAE alginate-based MPs for incorporation into biscuit dough, yielding a product with a desirable particle size and flowability. The biscuits still retained a significant amount of TPC and AA, indicating that microencapsulation is a suitable strategy. Data from the acceptance questionnaire revealed that biscuits containing MPs loaded with absinthin-rich extract were comparable to the control ones regarding overall acceptance. In conclusion, a promising product was developed that effectively masks the bitterness of appetite-modulating bioactive compounds, with significant health-promoting potential. However, further investigation into the biological effects (e.g., hormonal responses, feelings of hunger, etc.) of these baked products is required. Full article
(This article belongs to the Special Issue Gels: Diversity of Structures and Applications in Food Science)
Show Figures

Graphical abstract

21 pages, 1985 KB  
Article
Inactivated Type ‘O’ Foot and Mouth Disease Virus Encapsulated in Chitosan Nanoparticles Induced Protective Immune Response in Guinea Pigs
by Kalaivanan Ramya, Subodh Kishore, Palanisamy Sankar, Ganesh Kondabatulla, Bedaso Mamo Edao, Ramasamy Saravanan and Kumaraguruban Karthik
Animals 2025, 15(24), 3540; https://doi.org/10.3390/ani15243540 - 9 Dec 2025
Viewed by 397
Abstract
Foot and mouth disease is a contagious viral disease infecting ungulates, with great economic impact on farmers’ income; it is primarily controlled using inactivated vaccines, which have certain limitations, such as short-lived immunity and a lack of mucosal immunity at the portals of [...] Read more.
Foot and mouth disease is a contagious viral disease infecting ungulates, with great economic impact on farmers’ income; it is primarily controlled using inactivated vaccines, which have certain limitations, such as short-lived immunity and a lack of mucosal immunity at the portals of virus entry. The present approach aims to exploit the efficiency of chitosan nanoparticle-encapsulated inactivated type ‘O’ FMDV antigen (FMDV-CS-NPs) to induce mucosal and systemic immune responses in a guinea pig animal model through intranasal and intramuscular administration in comparison with the conventional inactivated, mineral oil-adjuvanted vaccine that is administered systemically. In this study, the FMDV-CS-NPs were prepared by ionotropic gelation, followed by incubation; were characterized for their physical properties and in vitro antigen release; and were found to encapsulate a good amount of antigen. The prepared nanoparticles were assessed for their ability to induce humoral and cell-mediated immune responses by SNTs; indirect ELISAs for serum IgG, IgG1, and IgG2; and nasal washing sIgA and lymphocyte proliferation assays. The preparation induced comparatively more measurable sIgA and systemic immune responses with the intranasal and intramuscular routes of administration, respectively, which are attributable to a specific interaction between the positively charged chitosan and the negatively charged mucosal surface and cell membrane. The challenge infection protected 87.5% of the animals in the FMDV-CS-NP I/M group, followed by 77.7% in the FMDV-CS-NP I/N and inactivated vaccine groups. The outcomes of this study in guinea pigs highlight that chitosan nanoparticle-based vaccine formulations could be employed as a promising antigen delivery system for targeted delivery, devoid of any adverse effect, to induce protective immune responses. Full article
(This article belongs to the Section Veterinary Clinical Studies)
Show Figures

Figure 1

37 pages, 11900 KB  
Review
Controlled Release Technologies for Diltiazem Hydrochloride: A Comprehensive Review of Solid Dosage Innovations
by Estefanía Troches-Mafla, Constain H. Salamanca and Yhors Ciro
Pharmaceutics 2025, 17(11), 1491; https://doi.org/10.3390/pharmaceutics17111491 - 19 Nov 2025
Viewed by 1032
Abstract
Introduction: Diltiazem hydrochloride (DH) is a calcium channel blocker used in the treatment of hypertension, angina pectoris, and arrhythmias. Its short half-life and frequent dosing requirements limit patient adherence and cause plasma concentration fluctuations. Objective: This review critically examines recent pharmaceutical [...] Read more.
Introduction: Diltiazem hydrochloride (DH) is a calcium channel blocker used in the treatment of hypertension, angina pectoris, and arrhythmias. Its short half-life and frequent dosing requirements limit patient adherence and cause plasma concentration fluctuations. Objective: This review critically examines recent pharmaceutical technologies and formulation strategies for modified-release dosage forms (MRDFs) of diltiazem hydrochloride, emphasizing their impact on pharmacokinetics, clinical performance, and regulatory aspects. Methodology: A structured literature review (2010–2025) was conducted using databases such as PubMed, ScienceDirect, MDPI, and ACS Publications. Studies were selected based on relevance to solid oral MRDFs of DH and their associated manufacturing techniques. Results: Techniques including direct compression, granulation, extrusion–spheronization, spray drying, solvent evaporation, and ionotropic gelation have enabled the development of hydrophilic matrices, coated pellets, microspheres, and osmotic systems. Functional polymers such as HPMC, Eudragit®, and ethylcellulose play a central role in modulating release kinetics and improving bioavailability. Conclusions: This review not only synthesizes current formulation strategies but also explores reverse engineering of ideal release profiles and the integration of advanced modeling tools such as physiologically based pharmacokinetic (PBPK) modeling and in vitro–in vivo correlation (IVIVC). These approaches support the rational design of personalized, regulatory-compliant DH therapies. Full article
Show Figures

Figure 1

15 pages, 1326 KB  
Article
Preparation and Characterization of Polydatin–Chitosan Nanocapsules for Enhanced Drug Delivery Efficacy
by Donato Nichil, Sofia Migani, Marisa Colone, Leonardo Severini, Simona Sennato, Giuseppina Bozzuto, Aurora Patrizi, Cecilia Bombelli, Giampietro Ravagnan, Annarita Stringaro and Leonardo Mattiello
Molecules 2025, 30(22), 4400; https://doi.org/10.3390/molecules30224400 - 14 Nov 2025
Viewed by 643
Abstract
Reactive oxygen species (ROS) are highly reactive molecules that, when produced in excess, contribute to oxidative stress, promoting cellular damage and the progression of various diseases, including cancer. Polydatin (PD) is known for its antioxidant, anti-inflammatory, and pro-apoptotic properties, proving effective in several [...] Read more.
Reactive oxygen species (ROS) are highly reactive molecules that, when produced in excess, contribute to oxidative stress, promoting cellular damage and the progression of various diseases, including cancer. Polydatin (PD) is known for its antioxidant, anti-inflammatory, and pro-apoptotic properties, proving effective in several in vitro studies as an antitumor agent. However, its clinical application is limited by low bioavailability, poor water solubility, and chemical instability. To overcome these limitations, nanocarrier systems based on biopolymers, such as chitosan (CS), represent promising strategies for drug delivery. In this study, we developed and optimized CS nanocapsules loaded with Polydatin using the ionotropic gelation method. The final formulation was characterized by UV-Vis spectrophotometry, scanning electron microscopy (SEM), and dynamic and dielectrophoretic light scattering (DLS, DELS). Encapsulation efficiency (EE) and the biological effects of the nanocapsules on cancer cells were also evaluated. To assess their antitumor potential, PD-CS nanoparticles were tested on the human breast cancer SKBR3 cells, analyzing their effects on cell viability. The results demonstrate that CS nanocapsules loaded with PD are able to reduce SKBR3 cell proliferation, highlighting their potential for developing new therapeutic tools for cancer treatment. Full article
(This article belongs to the Section Nanochemistry)
Show Figures

Figure 1

18 pages, 2285 KB  
Article
Immobilization of Bioimprinted Phospholipase D and Its Catalytic Behavior for Transphosphatidylation in the Biphasic System
by Bishan Guo, Huiyi Shang, Juntan Wang, Hongwei Liu and Haihua Zhu
Processes 2025, 13(11), 3424; https://doi.org/10.3390/pr13113424 - 24 Oct 2025
Viewed by 522
Abstract
Phosphatidylserine (PS) holds considerable importance in both the food and medical sectors; however, its biosynthesis is critically dependent on phospholipase D (PLD). The practical application of PLD is constrained by pronounced side reactions in its free form and by reduced selectivity when immobilized. [...] Read more.
Phosphatidylserine (PS) holds considerable importance in both the food and medical sectors; however, its biosynthesis is critically dependent on phospholipase D (PLD). The practical application of PLD is constrained by pronounced side reactions in its free form and by reduced selectivity when immobilized. To address these challenges, this study employed a sequential strategy involving bioimprinting to hyperactivate PLD, followed by microencapsulation via ionotropic gelation within an alginate–chitosan matrix. This approach induced conformational rigidification, enabling PLD to maintain its hyperactivated state in aqueous environments. Under optimal conditions, the encapsulation efficiency reached 78.56%, and the enzyme activity recovery achieved 105.27%. The immobilized bioimprinted PLD demonstrated exceptional catalytic performance, achieving a 94.68% PS yield within 20 min, which significantly surpassed that of free PLD (85.82% in 150 min) and non-imprinted immobilized PLD (90.34% in 60 min). This represents 7.27-fold and 2.14-fold efficiency improvements, respectively. Furthermore, the biocatalyst exhibited outstanding storage stability, thermal stability, and reusability (77.53% yield after 8 cycles). To our knowledge, this is the first report combining bioimprinting with alginate-chitosan microencapsulation via ionotropic gelation, which yielded remarkably enhanced PLD activity. These findings highlight the strong potential of this method for efficient PS production. Full article
(This article belongs to the Section Materials Processes)
Show Figures

Graphical abstract

21 pages, 3648 KB  
Article
Preparation and Physicochemical Evaluation of Ionically Cross-Linked Chitosan Nanoparticles Intended for Agricultural Use
by Maria Karayianni, Emi Haladjova, Stanislav Rangelov and Stergios Pispas
Polysaccharides 2025, 6(3), 67; https://doi.org/10.3390/polysaccharides6030067 - 1 Aug 2025
Viewed by 1430
Abstract
The search for sustainable, economically viable, and effective plant protection strategies against pathogenic bacteria, fungi, and viruses is a major challenge in modern agricultural practices. Chitosan (CS) is an abundant cationic natural biopolymer known for its biocompatibility, low toxicity, and antimicrobial properties. Its [...] Read more.
The search for sustainable, economically viable, and effective plant protection strategies against pathogenic bacteria, fungi, and viruses is a major challenge in modern agricultural practices. Chitosan (CS) is an abundant cationic natural biopolymer known for its biocompatibility, low toxicity, and antimicrobial properties. Its potential use in agriculture for pathogen control is a promising alternative to traditional chemical fertilisers and pesticides, which raise concerns regarding public health, environmental protection, and pesticide resistance. This study focused on the preparation of chitosan nanoparticles (CS-NPs) through cross-linking with organic molecules, such as tannic acid (TA). Various formulations were explored for the development of stable nanoscale particles having encapsulation capabilities towards low compounds of varying polarity and with potential agricultural applications relevant to plant health and growth. The solution properties of the NPs were assessed using dynamic and electrophoretic light scattering (DLS and ELS); their morphology was observed through atomic force microscopy (AFM), while analytical ultracentrifugation (AUC) measurements provided insights into their molar mass. Their properties proved to be primarily influenced by the concentration of CS, which significantly affected its intrinsic conformation. Additional structural insights were obtained via infrared and UV–Vis spectroscopic measurements, while detailed fluorescence analysis with the use of three different probes, as model cargo molecules, provided information regarding the hydrophobic and hydrophilic microdomains within the particles. Full article
(This article belongs to the Collection Bioactive Polysaccharides)
Show Figures

Figure 1

35 pages, 3359 KB  
Article
GSH/pH-Responsive Chitosan–PLA Hybrid Nanosystems for Targeted Ledipasvir Delivery to HepG2 Cells: Controlled Release, Improved Selectivity, DNA Interaction, Electrochemical and Stopped-Flow Kinetics Analyses
by Ahmed M. Albasiony, Amr M. Beltagi, Mohamed M. Ibrahim, Shaban Y. Shaban and Rudi van Eldik
Int. J. Mol. Sci. 2025, 26(13), 6070; https://doi.org/10.3390/ijms26136070 - 24 Jun 2025
Cited by 4 | Viewed by 1697
Abstract
This study aimed to design dual-responsive chitosan–polylactic acid nanosystems (PLA@CS NPs) for controlled and targeted ledipasvir (LED) delivery to HepG2 liver cancer cells, thereby reducing the systemic toxicity and improving the therapeutic selectivity. Two formulations were developed utilizing ionotropic gelation and w/ [...] Read more.
This study aimed to design dual-responsive chitosan–polylactic acid nanosystems (PLA@CS NPs) for controlled and targeted ledipasvir (LED) delivery to HepG2 liver cancer cells, thereby reducing the systemic toxicity and improving the therapeutic selectivity. Two formulations were developed utilizing ionotropic gelation and w/o/w emulsion techniques: LED@CS NPs with a size of 143 nm, a zeta potential of +43.5 mV, and a loading capacity of 44.1%, and LED-PLA@CS NPs measuring 394 nm, with a zeta potential of +33.3 mV and a loading capacity of 89.3%, with the latter demonstrating significant drug payload capacity. Since most drugs work through interaction with DNA, the in vitro affinity of DNA to LED and its encapsulated forms was assessed using stopped-flow and other approaches. They bind through multi-modal electrostatic and intercalative modes via two reversible processes: a fast complexation followed by a slow isomerization. The overall binding activation parameters for LED (cordination affinity, Ka = 128.4 M−1, Kd = 7.8 × 10−3 M, ΔG = −12.02 kJ mol−1), LED@CS NPs (Ka = 2131 M−1, Kd = 0.47 × 10−3 M, ΔG = −18.98 kJ mol−1) and LED-PLA@CS NPs (Ka = 22026 M−1, Kd = 0.045 × 10−3 M, ΔG = −24.79 kJ mol−1) were obtained with a reactivity ratio of 1/16/170 (LED/LED@CS NPs/LED-PLA@CS NPs). This indicates that encapsulation enhanced the interaction between the DNA and the LED-loaded nanoparticle systems, without changing the mechanism, and formed thermodynamically stable complexes. The drug release kinetics were assessed under tumor-mimetic conditions (pH 5.5, 10 mM GSH) and physiological settings (pH 7.4, 2 μM GSH). The LED@CS NPs and LED-PLA@CS NPs exhibited drug release rates of 88.0% and 73%, respectively, under dual stimuli over 50 h, exceeding the release rates observed under physiological conditions, which were 58% and 54%, thereby indicating that the LED@CS NPs and LED-PLA@CS NPs systems specifically target malignant tissue. Release regulated by Fickian diffusion facilitates tumor-specific payload delivery. Although encapsulation did not enhance the immediate cytotoxicity compared to free LED, as demonstrated by an in vitro cytotoxicity in HepG2 cancer cell lines, it significantly enhanced the therapeutic index (2.1-fold for LED-PLA@CS NPs) by protecting non-cancerous cells. Additionally, the nanoparticles demonstrated broad-spectrum antibacterial effects, suggesting efficacy in the prevention of chemotherapy-related infections. The dual-responsive LED-PLA@CS NPs allowed controlled tumor-targeted LED delivery with better selectivity and lower off-target toxicity, making LED-PLA@CS NPs interesting candidates for repurposing HCV treatments into safer cancer nanomedicines. Furthermore, this thorough analysis offers useful reference information for comprehending the interaction between drugs and DNA. Full article
(This article belongs to the Section Molecular Nanoscience)
Show Figures

Graphical abstract

16 pages, 3483 KB  
Article
Design and Activity Evaluation of Berberine-Loaded Dual pH and Enzyme-Sensitive Colon-Targeting Microparticles
by Jingqi Sun, Xinlong Chai, Xiwen Zeng, Qingwei Wang, Yanwen Ling, Lihong Wang and Jin Su
Pharmaceutics 2025, 17(6), 778; https://doi.org/10.3390/pharmaceutics17060778 - 13 Jun 2025
Viewed by 1469
Abstract
Ulcerative colitis (UC) is a multifactorial disorder, and conventional oral berberine (BBR) suffers from poor colonic targeting. This study aimed to develop a colon-targeted microparticle system (BBR-ES MPs) based on chitosan (CS) and Eudragit S-100 to enhance BBR delivery efficiency and therapeutic efficacy [...] Read more.
Ulcerative colitis (UC) is a multifactorial disorder, and conventional oral berberine (BBR) suffers from poor colonic targeting. This study aimed to develop a colon-targeted microparticle system (BBR-ES MPs) based on chitosan (CS) and Eudragit S-100 to enhance BBR delivery efficiency and therapeutic efficacy in UC. Methods: BBR-CS nanocarriers were prepared via ionotropic gelation and coated with Eudragit S-100 to form pH/enzyme dual-responsive MPs. Colon-targeting performance was validated through in vitro release assays. SPF-grade male KM mice (Ethics Approval No.: JMSU-2021090301) with dextran sulfate sodium (DSS)-induced UC were divided into normal, model, BBR, and BBR-ES MPs groups. Therapeutic outcomes were evaluated by monitoring body weight, disease activity index (DAI), colon length, histopathology, inflammatory cytokines (IL-1β, IL-6, TNF-α, IL-10), and myeloperoxidase (MPO) activity via ELISA. Gut microbiota diversity was analyzed using 16S rRNA sequencing. Results: BBR-ES MP treatment significantly reduced DAI scores (p < 0.01), restored colon length, downregulated pro-inflammatory cytokines (IL-1β, IL-6, TNF-α; p < 0.05), and upregulated anti-inflammatory IL-10. Microbiota analysis revealed that the Bacteroidetes/Firmicutes ratio, which decreased in the model group, was restored post-treatment, with alpha/beta diversity approaching normal levels. BBR-ES MPs outperformed free BBR at equivalent doses. Conclusion: BBR-ES MPs achieved colon-targeted drug delivery via pH/enzyme dual-responsive mechanisms, effectively alleviating UC inflammation and modulating gut dysbiosis, offering a safe and precise therapeutic strategy for UC management. Full article
(This article belongs to the Section Drug Targeting and Design)
Show Figures

Graphical abstract

15 pages, 2526 KB  
Article
Ultrasound-Enhanced Ionotropic Gelation of Pectin for Lemon Essential Oil Encapsulation: Morphological Characterization and Application in Fresh-Cut Apple Preservation
by Rofia Djerri, Salah Merniz, Maria D’Elia, Nadjwa Aissani, Aicha Khemili, Mohamed Abou Mustapha, Luca Rastrelli and Louiza Himed
Foods 2025, 14(11), 1968; https://doi.org/10.3390/foods14111968 - 31 May 2025
Cited by 3 | Viewed by 1557
Abstract
The growing demand for natural preservatives in the food industry has highlighted the importance of essential oils (EOs), despite their limitations related to volatility and oxidative instability. This study addresses these challenges by developing pectin-based microcapsules for encapsulating lemon essential oil (LEO) using [...] Read more.
The growing demand for natural preservatives in the food industry has highlighted the importance of essential oils (EOs), despite their limitations related to volatility and oxidative instability. This study addresses these challenges by developing pectin-based microcapsules for encapsulating lemon essential oil (LEO) using ultrasound-assisted ionotropic gelation. The EO, extracted from Citrus limon (Eureka variety), exhibited a high limonene content (56.18%) and demonstrated significant antioxidant (DPPH IC50: 28.43 ± 0.14 µg/mL; ABTS IC50: 35.01 ± 0.11 µg/mL) and antifungal activities, particularly against A. niger and Botrytis spp. Encapsulation efficiency improved to 82.3% with ultrasound pretreatment, and SEM imaging confirmed spherical, uniform capsules. When applied to fresh-cut apples, LEO-loaded capsules significantly reduced browning (browning score: 1.2 ± 0.3 vs. 2.8 ± 0.2 in control), microbial load (4.9 ± 0.2 vs. 6.5 ± 0.4 log CFU/g), and weight loss (4.2% vs. 6.4%) after 10 days of storage at 4 °C. These results underscore the potential of ultrasound-enhanced pectin encapsulation for improving EO stability and efficacy in food preservation systems. Full article
Show Figures

Graphical abstract

22 pages, 12952 KB  
Article
Ionotropic Gelation and Chemical Crosslinking as Tools to Obtain Gellan Gum-Based Beads with Mesalazine
by Piotr Gadziński, Agnieszka Skotnicka, Natalia Lisiak, Ewa Totoń, Błażej Rubiś, Ewa Florek, Dariusz T. Mlynarczyk, Mirosław Szybowicz, Ewelina Nowak and Tomasz Osmałek
Pharmaceutics 2025, 17(5), 569; https://doi.org/10.3390/pharmaceutics17050569 - 25 Apr 2025
Viewed by 1379
Abstract
Introduction: Many orally administered drugs are either unstable in the acidic environment of the stomach or cause moderate to severe side effects in the upper gastrointestinal tract (GIT). These limitations can reduce therapeutic efficacy, discourage patient compliance, worsen the disease, and even contribute [...] Read more.
Introduction: Many orally administered drugs are either unstable in the acidic environment of the stomach or cause moderate to severe side effects in the upper gastrointestinal tract (GIT). These limitations can reduce therapeutic efficacy, discourage patient compliance, worsen the disease, and even contribute to the risk of cancer development. To overcome these issues, drug release often needs to be modified and targeted to the distal parts of the GIT. This is typically achieved through the use of pH-sensitive polymer coatings or incorporation into polymeric delivery systems. With this in mind, the aim of this project was to design, develop, and characterize gellan gum-based beads for colon-specific prolonged release of mesalazine, with potential application in the chemoprevention and treatment of bowel diseases. Materials and Methods: The dehydrated capsules were characterized using Raman spectroscopy and scanning electron microscopy. The crosslinked gellan gum was additionally evaluated for cytotoxicity. Key parameters such as pH-dependent swelling behavior, drug content, encapsulation efficiency, and drug release in simulated gastrointestinal fluids were also assessed. Furthermore, the behavior of the capsules in the gastrointestinal tract was studied in a rat model to evaluate their in vivo performance. Results: Significant differences in drug release profiles were observed between formulations crosslinked solely with calcium ions and those additionally crosslinked with glutaraldehyde (GA). The incorporation of GA effectively prolonged the release of mesalazine. These findings were further supported by in vivo studies conducted on Wistar rats, where the GA-crosslinked formulation demonstrated a markedly extended release compared to the formulation prepared using only ionotropic gelation. Conclusions: The combination of ionotropic gelation and glutaraldehyde crosslinking in gellan gum-based beads appears to be a promising strategy for achieving colon-specific prolonged release of mesalazine, facilitating targeted delivery to the distal regions of the gastrointestinal tract. Full article
Show Figures

Figure 1

21 pages, 4633 KB  
Article
Alectinib-Loaded Chitosan–Alginate Nanoparticles: A Novel Synthesis Method with In Vitro and In Vivo Evaluations
by Tha’er Ata, Israa Al-Ani, Nida Karameh, Mahmood R. Atta and Wael Abu Dayyih
Pharmaceutics 2025, 17(4), 492; https://doi.org/10.3390/pharmaceutics17040492 - 8 Apr 2025
Cited by 6 | Viewed by 3610
Abstract
Background/Objectives: Non-small cell lung cancer (NSCLC) constitutes over 84% of all lung cancer cases and is a leading cause of cancer-related mortality globally. Alectinib, a second-generation anaplastic lymphoma kinase (ALK) inhibitor, is effective in ALK-positive NSCLC; however, its clinical potential is hampered [...] Read more.
Background/Objectives: Non-small cell lung cancer (NSCLC) constitutes over 84% of all lung cancer cases and is a leading cause of cancer-related mortality globally. Alectinib, a second-generation anaplastic lymphoma kinase (ALK) inhibitor, is effective in ALK-positive NSCLC; however, its clinical potential is hampered by poor aqueous solubility and limited oral bioavailability. This study aimed to develop Alectinib-loaded chitosan–alginate nanoparticles (ACANPs) to enhance its solubility, oral bioavailability, and therapeutic efficacy. Methods: ACANPs were synthesized using a novel combined solid/oil/water (s/o/w) emulsification technique with ionotropic gelation. Characterization was performed using Fourier-transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), dynamic light scattering (DLS), and zeta potential measurements. A validated high-performance liquid chromatography (HPLC) method quantified the Alectinib. In vitro drug release studies compared free Alectinib with ACANPs. Cytotoxicity against NSCLC cell lines (A549 and H460) was assessed using MTT assays. Pharmacokinetic parameters were evaluated in rats using LC–MS/MS. Results: ACANPs showed a high encapsulation efficiency (~97%), an average particle size of 161 nm, and a positive zeta potential of +21 mV. In vitro release studies revealed a threefold increase in drug release from ACANPs over 48 h compared to free Alectinib. Cytotoxicity assays demonstrated significantly reduced IC50 values for ACANPs. Pharmacokinetic analyses showed an enhanced maximum plasma concentration (Cmax) and area under the curve (AUC), indicating a 78% increase in oral bioavailability. Conclusions: ACANPs substantially improved the solubility, cytotoxic efficacy, and oral bioavailability of Alectinib, suggesting their potential as a promising nanocarrier system for enhancing NSCLC treatment outcomes. Full article
Show Figures

Graphical abstract

16 pages, 2011 KB  
Proceeding Paper
Sustainable Pharmaceutical Development Utilizing Vigna mungo Polymer Microbeads
by Krishnaveni Manubolu and Raveesha Peeriga
Eng. Proc. 2024, 81(1), 14; https://doi.org/10.3390/engproc2024081014 - 2 Apr 2025
Viewed by 828
Abstract
This study explores the potential of Vigna mungo gum as a sustainable and innovative natural polymer for developing microbeads for the controlled delivery of vildagliptin, a widely used antidiabetic agent. Unlike conventional natural polymers, Vigna mungo gum offers unique biocompatibility, biodegradability, and an [...] Read more.
This study explores the potential of Vigna mungo gum as a sustainable and innovative natural polymer for developing microbeads for the controlled delivery of vildagliptin, a widely used antidiabetic agent. Unlike conventional natural polymers, Vigna mungo gum offers unique biocompatibility, biodegradability, and an eco-friendly production process, distinguishing it as a superior candidate for drug delivery systems. Microbeads were prepared by combining Vigna mungo gum with sodium alginate and inducing gelation using calcium carbonate. Scanning electron microscopy (SEM) revealed a rough, porous microbead surface, advantageous for drug encapsulation and controlled release. Drug release studies demonstrated sustained release kinetics, highlighting the effectiveness of this formulation. These findings underscore the novelty of Vigna mungo gum as a promising platform for antidiabetic drug delivery, providing a sustainable alternative to existing polymer systems. Full article
(This article belongs to the Proceedings of The 1st International Online Conference on Bioengineering)
Show Figures

Figure 1

31 pages, 6969 KB  
Article
A Green, Solvent- and Cation-Free Approach for Preparing 5-Fluorouracil-Loaded Alginate Nanoparticles Using Microfluidic Technology
by Abdolelah Jaradat, Ali Alazzo, Mohammad F. Bayan and Wasfy Obeidat
Pharmaceutics 2025, 17(4), 438; https://doi.org/10.3390/pharmaceutics17040438 - 29 Mar 2025
Cited by 1 | Viewed by 1449
Abstract
Background/Objectives: Alginate nanoparticles (NPs) are commonly synthesised using either an emulsion technique that involves organic solvent use or ionotropic gelation utilising multivalent cations, e.g., Ca+2. However, the extensive use of organic solvents imposes detrimental effects on the ecosystem, and using [...] Read more.
Background/Objectives: Alginate nanoparticles (NPs) are commonly synthesised using either an emulsion technique that involves organic solvent use or ionotropic gelation utilising multivalent cations, e.g., Ca+2. However, the extensive use of organic solvents imposes detrimental effects on the ecosystem, and using multivalent cations as crosslinkers could eventually lead to the leakage of these cations, thus disrupting nanoparticle matrices. Therefore, this study aimed to overcome the limitations of these techniques by eliminating the usage of organic solvents and multivalent cations. Methods: In this research, alginate nanoparticles were synthesised using proton gelation by microfluidic technology through protonating alginate carboxylate groups to crosslink alginate chains through H-bond formation. Results: The prepared acid-gelled alginate nanoparticles demonstrated an MHD circa 200 nm and a PDI of less than 0.4 at pH 0.75. Moreover, 5-FU was successfully encapsulated into acid-gelled alginate nanoparticles and displayed a high EE% of around 30%, comparable to the EE% at high alginate concentration and molecular weight (0.4 H-ALG) achieved by Ca+2-crosslinked alginate nanoparticles; however, 5-FU NPs had superior characteristics, i.e., a lower MHD (around 500 nm) and PDI (<0.5). The optimum formula (0.4 H-ALG) was explored at various pH values, i.e., low pH of 4.5 and high pH of 10, and alginate NPs produced by acid gelation demonstrated high stability in terms of MHD and PDI, with slight changes at different pH values, indicating stable crosslinking of alginate matrices prepared by technology compared with Ca+2-crosslinked alginate NPs. Conclusions: In conclusion, this research has invented an ecologically friendly approach to producing acid-gelled alginate nanoparticles with superior characteristics compared with the conventional methods, and they could be harnessed as nanocarriers for therapeutics delivery (5-FU). Also, this research offers a promising approach for developing eco-friendly and biocompatible drug carriers. The produced nanoparticles have the potential to enhance drug stability, improve controlled release, and minimise toxic effects, making them suitable for pharmaceutical applications. Full article
Show Figures

Figure 1

17 pages, 2919 KB  
Article
Antimicrobial and Antibiofilm Activity of Chitosan Nanoparticles Against Staphylococcus aureus Strains Isolated from Bovine Mastitis Milk
by Carlos Alarcón Godoy, Iván Balic, Adrián A. Moreno, Oscar Diaz, Carla Arenas Colarte, Tamara Bruna Larenas, Alexander Gamboa and Nelson Caro Fuentes
Pharmaceutics 2025, 17(2), 186; https://doi.org/10.3390/pharmaceutics17020186 - 2 Feb 2025
Cited by 8 | Viewed by 2696
Abstract
Background/Objectives: Bovine mastitis (BM), a prevalent and economically burdensome bacterial infection affecting dairy cattle, poses a significant challenge to the dairy industry. The traditional approach to combating BM, relying heavily on antibiotics, faces growing concerns due to the increasing antibiotic resistance exhibited by [...] Read more.
Background/Objectives: Bovine mastitis (BM), a prevalent and economically burdensome bacterial infection affecting dairy cattle, poses a significant challenge to the dairy industry. The traditional approach to combating BM, relying heavily on antibiotics, faces growing concerns due to the increasing antibiotic resistance exhibited by pathogens. The objective of this study was to evaluate and determine the antimicrobial and anti-biofilm potential of chitosan nanoparticles (NQo) on S. aureus strains isolated from milk samples obtained from dairy areas in southern Chile from cows diagnosed with BM. Methods: NQo were synthesized using the ionotropic gelation method and thoroughly characterized by transmission electron microscopy (TEM) and dynamic light scattering (DLS). Results: The NQo exhibit a robust positive charge (Z-potential of +55.4 ± 2.5 mV) and an exceptionally small size (20.3 ± 3.2 nm). This unique combination of properties makes NQo particularly well-suited for targeting and interacting with bacterial pathogens. To assess the effectiveness of NQo against BM, we conducted a series of experiments using a Staphylococcus aureus strain isolated from milk samples of cows diagnosed with BM in southern Chile. NQo demonstrated a remarkable ability to inhibit bacterial proliferation and effectively modulate biofilm formation in the S. aureus strains. Furthermore, the performance of NQo in comparison to established antibiotics like ampicillin and gentamicin strongly suggests that these nanoparticles hold immense potential as an attractive alternative for the control, prevention, and/or treatment of BM. Conclusions: NQo exhibit both antimicrobial and antibiofilm activity against a clinically relevant BM pathogen. Further investigations are necessary to develop a hydrogel formulation optimized for effective delivery to the target diseased tissue. Full article
Show Figures

Figure 1

21 pages, 7521 KB  
Article
Potential of Cricket Chitosan for Nanoparticle Development Through Ionotropic Gelation: Novel Source for Cosmeceutical Delivery Systems
by Jirasit Inthorn, Pratthana Chomchalao, Puracheth Rithchumpon, Saranya Juntrapirom, Watchara Kanjanakawinkul, Thomas Rades and Wantida Chaiyana
Pharmaceutics 2024, 16(12), 1618; https://doi.org/10.3390/pharmaceutics16121618 - 20 Dec 2024
Cited by 1 | Viewed by 2148
Abstract
Background/Objectives: Crickets are recognized as an alternative source of chitosan. This study aimed to assess the potential of cricket-derived chitosan as a natural source to develop chitosan nanoparticles (CNPs). Methods: Chitosan were isolated from different cricket species, including Gryllus bimaculatus, Teleogryllus mitratus [...] Read more.
Background/Objectives: Crickets are recognized as an alternative source of chitosan. This study aimed to assess the potential of cricket-derived chitosan as a natural source to develop chitosan nanoparticles (CNPs). Methods: Chitosan were isolated from different cricket species, including Gryllus bimaculatus, Teleogryllus mitratus, and Acheta domesticus. The isolated chitosan were characterized by their functional groups, crystallographic and thermal properties, molecular structure, morphology, water solubility, molecular weight, binding capacity, irritation potential, and cytotoxicity in comparison to commercial shrimp-based chitosan. CNPs were developed through an ionotropic gelation method, followed by the evaluation of particle size, polydispersity index (PDI), and zeta potential. Results: The findings of this study indicate that chitosan can be successfully isolated from the three cricket species, with yields ranging from 4.35% to 5.22% w/w of the dried material. The characteristics of cricket-based chitosan were similar to those of commercial chitosan, except that the cricket-based chitosan displayed a higher crystallinity and a lower molecular weight. Additionally, CPNs were successfully produced from cricket-based chitosan using sodium citrate as a crosslinking agent. All cricket-based chitosan exhibited no irritation or cytotoxicity. Chitosan derived from A. domesticus however was found to be the most suitable to develop CPNs, as it produced the smallest particle size (522.0 ± 12.1 nm) with a comparatively narrow PDI (0.388 ± 0.026) and an acceptable positive zeta potential (34.2 ± 4.4 mV). Conclusions: Cricket-derived chitosan compares favorably with crustacean-derived chitosan and showed potential for a range of applications, including the use as a nanocosmeceutical delivery system in topical and cosmetic formulations. Full article
(This article belongs to the Section Nanomedicine and Nanotechnology)
Show Figures

Figure 1

Back to TopTop