Impacts of Anthropogenic Disturbances on the Functional Traits of Wetland Plants: A Retrospective Review of Studies Conducted Globally over the Past Two Decades
Abstract
1. Introduction
2. Literature Acquisition and Data Classification
3. Temporal and Spatial Distribution of Studies over the Past Two Decades

4. Impact of Anthropogenic Interference on Plant Functional Traits
4.1. Drainage
4.2. Vegetation Removal
4.3. Invasive Alien Species
4.4. Nutrient Enrichment and Fertilization
4.5. Others
5. Summary and Future Prospects
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kundu, S.; Kundu, B.; Rana, N.K.; Mahato, S. Wetland Degradation and Its Impacts on Livelihoods and Sustainable Development Goals: An Overview. Sustain. Prod. Consum. 2024, 48, 419–434. [Google Scholar] [CrossRef]
- Engelhardt, K.A.; Ritchie, M.E. Effects of Macrophyte Species Richness on Wetland Ecosystem Functioning and Services. Nature 2001, 411, 687–689. [Google Scholar] [CrossRef] [PubMed]
- Sloey, T.M.; Ellis, V.S.; Kettenring, K.M. Using Plant Functional Traits to Inform Wetland Restoration. Wetlands 2023, 43, 92. [Google Scholar] [CrossRef]
- Ward, E.J. Wetlands Under Global Change. In Encyclopedia of Inland Waters; Elsevier: Amsterdam, The Netherlands, 2022; pp. 295–302. [Google Scholar]
- Li, J.; Prentice, I.C. Global Patterns of Plant Functional Traits and Their Relationships to Climate. Commun. Biol. 2024, 7, 1136. [Google Scholar] [CrossRef]
- Valladares, F.; Sanchez-Gomez, D.; Zavala, M.A. Quantitative Estimation of Phenotypic Plasticity: Bridging the Gap between the Evolutionary Concept and Its Ecological Applications. J. Ecol. 2006, 94, 1103–1116. [Google Scholar] [CrossRef]
- Palacio-López, K.; Beckage, B.; Scheiner, S.; Molofsky, J. The Ubiquity of Phenotypic Plasticity in Plants: A Synthesis. Ecol. Evol. 2015, 5, 3389–3400. [Google Scholar] [CrossRef]
- El-Barougy, R.F.; Elgamal, I.A.; Khedr, A.-H.A.; Bersier, L.-F. Contrasting Alien Effects on Native Diversity along Biotic and Abiotic Gradients in an Arid Protected Area. Sci. Rep. 2021, 11, 13557. [Google Scholar] [CrossRef]
- Wu, Y.; Du, Y.; Liu, X.; Wan, X.; Yin, B.; Hao, Y.; Wang, Y. Grassland Biodiversity Response to Livestock Grazing, Productivity, and Climate Varies across Biome Components and Diversity Measurements. Sci. Total Environ. 2023, 878, 162994. [Google Scholar] [CrossRef]
- Smith, V.H. Eutrophication of Freshwater and Coastal Marine Ecosystems: A Global Problem. Environ. Sci. Pollut. Res. Int. 2003, 10, 126–139. [Google Scholar] [CrossRef]
- MacDougall, A.S.; McCann, K.S.; Gellner, G.; Turkington, R. Diversity Loss with Persistent Human Disturbance Increases Vulnerability to Ecosystem Collapse. Nature 2013, 494, 86–89. [Google Scholar] [CrossRef]
- Newton, A.; Icely, J.; Cristina, S.; Perillo, G.M.E.; Turner, R.E.; Ashan, D.; Cragg, S.; Luo, Y.; Tu, C.; Li, Y.; et al. Anthropogenic, Direct Pressures on Coastal Wetlands. Front. Ecol. Evol. 2020, 8, 144. [Google Scholar] [CrossRef]
- Lomnicky, G.A.; Herlihy, A.T.; Kaufmann, P.R. Quantifying the Extent of Human Disturbance Activities and Anthropogenic Stressors in Wetlands across the Conterminous United States: Results from the National Wetland Condition Assessment. Environ. Monit. Assess. 2019, 191, 324. [Google Scholar] [CrossRef]
- Weaver, C.A.; Armitage, A.R. Above- and Belowground Responses to Nutrient Enrichment within a Marsh-Mangrove Ecotone. Estuar. Coast. SHELF Sci. 2020, 243, 106884. [Google Scholar] [CrossRef]
- Deshaies, A.; Boudreau, S.; Harper, K.A. Assisted Revegetation in a Subarctic Environment: Effects of Fertilization on the Performance of Three Indigenous Plant Species. Arct. Antarct. Alp. Res. 2009, 41, 434–441. [Google Scholar] [CrossRef]
- Belowground Biomass of Spartina alterniflora: Seasonal Variability and Response to Nutrients. Available online: https://webofscience.clarivate.cn/wos/alldb/full-record/PQDT:61517268 (accessed on 27 June 2024).
- Darby, F.A.; Turner, R.E. Below- and Aboveground Biomass of Spartina alterniflora Response to Nutrient Addition in a Louisiana Salt Marsh. Estuaries Coasts 2008, 31, 326–334. [Google Scholar] [CrossRef]
- Lenihan, W.; Schultz, R. Carnivorous Pitcher Plant Species (Sarracenia purpurea) Increases Root Growth in Response to Nitrogen Addition. Botany 2014, 92, 917–921. [Google Scholar] [CrossRef]
- Javed, Q.; Sun, J.; Azeem, A.; Jabran, K.; Du, D. Competitive Ability and Plasticity of Wedelia trilobata (L.) under Wetland Hydrological Variations. Sci. Rep. 2020, 10, 9431. [Google Scholar] [CrossRef] [PubMed]
- Cebrián-Piqueras, M.A.; Trinogga, J.; Trenkamp, A.; Minden, V.; Maier, M.; Mantilla-Contreras, J. Digging into the Roots: Understanding Direct and Indirect Drivers of Ecosystem Service Trade-Offs in Coastal Grasslands via Plant Functional Traits. Environ. Monit. Assess. 2021, 193, 271. [Google Scholar] [CrossRef]
- Zhang, Y.; Cui, B.; Xie, T.; Wang, Q.; Yan, J. Effect of Coastal Eutrophication on Growth and Physiology of Spartina alterniflora Loisel. Phys. Chem. Earth 2018, 103, 62–67. [Google Scholar] [CrossRef]
- Darby, F.A.; Turner, R.E. Effects of Eutrophication on Salt Marsh Root and Rhizome Biomass Accumulation. Mar. Ecol. Prog. Ser. 2008, 363, 63–70. [Google Scholar] [CrossRef]
- Zhang, L.; Song, C.; Wang, D.; Wang, Y. Effects of Exogenous Nitrogen on Freshwater Marsh Plant Growth and N2O Fluxes in Sanjiang Plain, Northeast China. Atmos. Environ. 2007, 41, 1080–1090. [Google Scholar] [CrossRef]
- Ket, W.A.; Schubauer-Berigan, J.P.; Craft, C.B. Effects of Five Years of Nitrogen and Phosphorus Additions on a Zizaniopsis Miliacea Tidal Freshwater Marsh. Aquat. Bot. 2011, 95, 17–23. [Google Scholar] [CrossRef]
- Frost, J.W.; Schleicher, T.; Craft, C. Effects of Nitrogen and Phosphorus Additions on Primary Production and Invertebrate Densities in a Georgia (Usa) Tidal Freshwater Marsh. Wetlands 2009, 29, 196–203. [Google Scholar] [CrossRef]
- Effects of Nutrient Addition on Plant Community Composition: A Functional Trait Analysis in a Long-Term Experiment-All Databases. Available online: https://webofscience.clarivate.cn/wos/alldb/full-record/PQDT:60652620 (accessed on 30 May 2024).
- Bubier, J.L.; Moore, T.R.; Bledzki, L.A. Effects of Nutrient Addition on Vegetation and Carbon Cycling in an Ombrotrophic Bog. Glob. Change Biol. 2007, 13, 1168–1186. [Google Scholar] [CrossRef]
- Hunter, A.; Morris, N.M.B.; Lafabrie, C.; Cebrian, J. Effects of Nutrient Enrichment on Distichlis Spicata and Salicornia Bigelovii in a Marsh Salt Pan. Wetlands 2008, 28, 760–775. [Google Scholar] [CrossRef]
- Bai, J.; Tang, H.; Chen, F.; Lou, Y. Functional Traits Response to Flooding Depth and Nitrogen Supply in the Helophyte Glyceria spiculosa (Gramineae). Aquat. Bot. 2021, 175, 103449. [Google Scholar] [CrossRef]
- Luo, W.; Xie, Y. Growth and Morphological Responses to Water Level and Nutrient Supply in Three Emergent Macrophyte Species. Hydrobiologia 2009, 624, 151–160. [Google Scholar] [CrossRef]
- Watson, E.B.; Andrews, H.M.; Fischer, A.; Cencer, M.; Coiro, L.; Kelley, S.; Wigand, C. Growth and Photosynthesis Responses of Two Co-Occurring Marsh Grasses to Inundation and Varied Nutrients. Botany 2015, 93, 671–683. [Google Scholar] [CrossRef]
- Cobacho, S.P.; Janssen, S.A.R.; Brekelmans, M.A.C.P.; van de Leemput, I.A.; Holmgren, M.; Christianen, M.J.A. High Temperature and Eutrophication Alter Biomass Allocation of Black Mangrove (Avicennia germinans L.) Seedlings. Mar. Environ. Res. 2024, 193, 106291. [Google Scholar] [CrossRef]
- Sloey, T.M.; Hester, M.W. Impact of Nitrogen and Importance of Silicon on Mechanical Stem Strength in Schoenoplectus Acutus and Schoenoplectus Californicus: Applications for Restoration. Wetl. Ecol. Manag. 2018, 26, 459–474. [Google Scholar] [CrossRef]
- Cui, X.; Song, W.; Feng, J.; Jia, D.; Guo, J.; Wang, Z.; Wu, H.; Qi, F.; Liang, J.; Lin, G. Increased Nitrogen Input Enhances Kandelia Obovata Seedling Growth in the Presence of Invasive Spartina alterniflora in Subtropical Regions of China. Biol. Lett. 2017, 13, 20160760. [Google Scholar] [CrossRef] [PubMed]
- Deschamps, L.; Maire, V.; Chen, L.; Fortier, D.; Gauthier, G.; Morneault, A.; Hardy-Lachance, E.; Dalcher-Gosselin, I.; Tanguay, F.; Gignac, C.; et al. Increased Nutrient Availability Speeds up Permafrost Development, While Goose Grazing Slows It down in a Canadian High Arctic Wetland. J. Ecol. 2023, 111, 449–463. [Google Scholar] [CrossRef]
- Day, R.H.; Doyle, T.W.; Draugelis-Dale, R.O. Interactive Effects of Substrate, Hydroperiod, and Nutrients on Seedling Growth of Salix nigra and Taxodium nistichum. Environ. Exp. Bot. 2006, 55, 163–174. [Google Scholar] [CrossRef]
- Sun, J.; Javed, Q.; Du, Y.; Azeem, A.; Abbas, A.; Iqbal, B.; He, Y.; Xiang, Y.; Du, D. Invasive Alternanthera philoxeroides Has Performance Advantages over Natives under Flooding with High Amount of Nitrogen. Aquat. Ecol. 2022, 56, 891–903. [Google Scholar] [CrossRef]
- Mozdzer, T.J.; Megonigal, J.P. Jack-and-Master Trait Responses to Elevated CO2 and N: A Comparison of Native and Introduced Phragmites australis. PLoS ONE 2012, 7, e42794. [Google Scholar] [CrossRef]
- Goodwillie, C.; McCoy, M.W.; Peralta, A.L. Long-term Nutrient Enrichment, Mowing, and Ditch Drainage Interact in the Dynamics of a Wetland Plant Community. Ecosphere 2020, 11, e03252. [Google Scholar] [CrossRef]
- Chong, M.; Humphreys, E.; Moore, T.R. Microclimatic Response to Increasing Shrub Cover and Its Effect on Sphagnum CO2 Exchange in a Bog. Ecoscience 2012, 19, 89–97. [Google Scholar] [CrossRef]
- Xu, X.; Zhang, Y.; Li, S.; Chen, H.; Liu, M.; Li, B.; Nie, M. Native Herbivores Indirectly Facilitate the Growth of Invasive Spartina in a Eutrophic Saltmarsh. Ecology 2022, 103, e3610. [Google Scholar] [CrossRef]
- Baldwin, A.H. Nitrogen and Phosphorus Differentially Affect Annual and Perennial Plants in Tidal Freshwater and Oligohaline Wetlands. Estuaries Coasts 2013, 36, 547–558. [Google Scholar] [CrossRef]
- Dangremond, E.M.; Simpson, L.T.; Osborne, T.Z.; Feller, I.C. Nitrogen Enrichment Accelerates Mangrove Range Expansion in the Temperate-Tropical Ecotone. Ecosystems 2020, 23, 703–714. [Google Scholar] [CrossRef]
- Tyler, A.C.; Lambrinos, J.G.; Grosholz, E.D. Nitrogen Inputs Promote the Spread of an Invasive Marsh Grass. Ecol. Appl. 2007, 17, 1886–1898. [Google Scholar] [CrossRef]
- Vivanco, L.; Irvine, I.C.; Martiny, J.B.H. Nonlinear Responses in Salt Marsh Functioning to Increased Nitrogen Addition. Ecology 2015, 96, 936–947. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.-B.; Zhou, M.-Y.; Qin, Y.-L.; Cornelissen, J.H.C.; Dong, M. Nutrient Effects on Aquatic Litter Decomposition of Free-Floating Plants Are Species Dependent. Glob. Ecol. Conserv. 2021, 30, e01748. [Google Scholar] [CrossRef]
- Hinzke, T.; Li, G.; Tanneberger, F.; Seeber, E.; Aggenbach, C.; Lange, J.; Kozub, L.; Knorr, K.-H.; Kreyling, J.; Kotowski, W. Potentially Peat-Forming Biomass of Fen Sedges Increases with Increasing Nutrient Levels. Funct. Ecol. 2021, 35, 1579–1595. [Google Scholar] [CrossRef]
- Macek, P.; Rejmankova, E. Response of Emergent Macrophytes to Experimental Nutrient and Salinity Additions. Funct. Ecol. 2007, 21, 478–488. [Google Scholar] [CrossRef]
- Mao, R.; Song, C.-C.; Zhang, X.-H.; Wang, X.-W.; Zhang, Z.-H. Response of Leaf, Sheath and Stem Nutrient Resorption to 7 Years of N Addition in Freshwater Wetland of Northeast China. Plant Soil 2013, 364, 385–394. [Google Scholar] [CrossRef]
- Hanson, A.; Johnson, R.; Wigand, C.; Oczkowski, A.; Davey, E.; Markham, E. Responses of Spartina alterniflora to Multiple Stressors: Changing Precipitation Patterns, Accelerated Sea Level Rise, and Nutrient Enrichment. Estuaries Coasts 2016, 39, 1376–1385. [Google Scholar] [CrossRef]
- Zhang, L.; Song, C.; Nkrumah, P.N. Responses of Ecosystem Carbon Dioxide Exchange to Nitrogen Addition in a Freshwater Marshland in Sanjiang Plain, Northeast China. Environ. Pollut. 2013, 180, 55–62. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, Y.; Xu, X.; Li, S.; Wu, J.; Li, B.; Nie, M. Root Plasticity Benefits a Global Invasive Species in Eutrophic Coastal Wetlands. Funct. Ecol. 2024, 38, 165–178. [Google Scholar] [CrossRef]
- Nelson, J.L.; Zavaleta, E.S. Salt Marsh as a Coastal Filter for the Oceans: Changes in Function with Experimental Increases in Nitrogen Loading and Sea-Level Rise. PLoS ONE 2012, 7, e38558. [Google Scholar] [CrossRef]
- Hargreaves, S.K.; Horrigan, E.J.; Jefferies, R.L. Seasonal Partitioning of Resource Use and Constraints on the Growth of Soil Microbes and a Forage Grass in a Grazed Arctic Salt-Marsh. Plant Soil 2009, 322, 279–291. [Google Scholar] [CrossRef]
- Rejmankova, E.; Macek, P.; Epps, K. Wetland Ecosystem Changes After Three Years of Phosphorus Addition. Wetlands 2008, 28, 914–927. [Google Scholar] [CrossRef]
- Born, J.; Michalski, S.G. Strong Divergence in Quantitative Traits and Plastic Behavior in Response to Nitrogen Availability among Provenances of a Common Wetland Plant. Aquat. Bot. 2017, 136, 138–145. [Google Scholar] [CrossRef]
- Hayes, M.A.; Jesse, A.; Tabet, B.; Reef, R.; Keuskamp, J.A.; Lovelock, C.E. The Contrasting Effects of Nutrient Enrichment on Growth, Biomass Allocation and Decomposition of Plant Tissue in Coastal Wetlands. Plant Soil 2017, 416, 193–204. [Google Scholar] [CrossRef]
- Reef, R.; Slot, M.; Motro, U.; Motro, M.; Motro, Y.; Adame, M.F.; Garcia, M.; Aranda, J.; Lovelock, C.E.; Winter, K. The Effects of CO2 and Nutrient Fertilisation on the Growth and Temperature Response of the Mangrove Avicennia germinans. Photosynth. Res. 2016, 129, 159–170. [Google Scholar] [CrossRef]
- The Implications of Nutrient Loading on Deltaic Wetlands-All Databases. Available online: https://webofscience.clarivate.cn/wos/alldb/full-record/PQDT:68817634 (accessed on 27 June 2024).
- Frevola, D.M.; Hovick, S.M. The Independent Effects of Nutrient Enrichment and Pulsed Nutrient Delivery on a Common Wetland Invader and Its Native Conspecific. Oecologia 2019, 191, 447–460. [Google Scholar] [CrossRef]
- Valdez, S.R.; Daleo, P.; DeLaMater, D.S.; Silliman, B.R. Variable Responses to Top-down and Bottom-up Control on Multiple Traits in the Foundational Plant, Spartina alterniflora. PLoS ONE 2023, 18, e0286327. [Google Scholar] [CrossRef]
- Azeem, A.; Wenxuan, M.; Changyan, T.; Javed, Q.; Abbas, A. Competition and Plant Trait Plasticity of Invasive (Wedelia trilobata) and Native Species (Wedelia Chinensis, WC) under Nitrogen Enrichment and Flooding Condition. Water 2021, 13, 3472. [Google Scholar] [CrossRef]
- Craft, C.; Krull, K.; Graham, S. Ecological Indicators of Nutrient Enrichment, Freshwater Wetlands, Midwestern United States (US). Ecol. Indic. 2007, 7, 733–750. [Google Scholar] [CrossRef]
- Hillmann, E.R.; Shaffer, G.P.; Wood, W.B.; Day, J.W.; Day, J.; Mancuso, J.; Lane, R.R.; Hunter, R.G. Above- and Belowground Response of Baldcypress and Water Tupelo Seedlings to Variable Rates of Nitrogen Loading: Mesocosm and Field Studies. Ecol. Eng. 2019, 137, 1–6. [Google Scholar] [CrossRef]
- Crosby, S.C.; Spiller, N.C.; Healy, D.S.; Brideau, L.; Stewart, L.M.; Vaudrey, J.M.P.; Tietz, K.E.; Fraboni, P.J. Assessing the Resiliency of Salt Marshes Under Increasing Nitrogen Loading. Estuaries Coasts 2021, 44, 1658–1670. [Google Scholar] [CrossRef]
- Tang, H.; Liu, Y.; Lou, Y.; Yu, D.; Zhou, M.; Lu, X.; Jiang, M. Nitrogen Availability Affects the Responses of Marsh Grass and Sedge Plants (Phragmites australis and Bolboschoenus planiculmis) to Flooding Time. Sci. Total Environ. 2024, 908, 168008. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Wang, Y.; Zou, C.B.; Wang, Z.-L. Aboveground Biomass Invariance Masks Significant Belowground Productivity Changes in Response to Salinization and Nitrogen Loading in Reed Marshes. Wetlands 2017, 37, 985–995. [Google Scholar] [CrossRef]
- Sparks, E.L.; Cebrian, J. Effects of Fertilization on Grasshopper Grazing of Northern Gulf of Mexico Salt Marshes. Estuaries Coasts 2015, 38, 988–999. [Google Scholar] [CrossRef]
- Johnson, D.S.; Warren, R.S.; Deegan, L.A.; Mozdzer, T.J. Saltmarsh Plant Responses to Eutrophication. Ecol. Appl. 2016, 26, 2649–2661. [Google Scholar] [CrossRef]
- Castro, P.; Valiela, I.; Freitas, H. Sediment Pool and Plant Content as Indicators of Nitrogen Regimes in Portuguese Estuaries. J. Exp. Mar. Biol. Ecol. 2009, 380, 1–10. [Google Scholar] [CrossRef]
- Uddin, M.N.; Robinson, R.W. Allelopathy and Resource Competition: The Effects of Phragmites australis Invasion in Plant Communities. Bot. Stud. 2017, 58, 29. [Google Scholar] [CrossRef]
- Yue, S.; Zhou, Y.; Xu, S.; Zhang, X.; Liu, M.; Qiao, Y.; Gu, R.; Xu, S.; Zhang, Y. Can the Non-Native Salt Marsh Halophyte Spartina alterniflora Threaten Native Seagrass (Zostera japonica) Habitats? A Case Study in the Yellow River Delta, China. Front. Plant Sci. 2021, 12, 643425. [Google Scholar] [CrossRef]
- Zhi, Y.; Li, H.; An, S.; Zhao, L.; Zhou, C.; Deng, Z. Inter-Specific Competition: Spartina alterniflora Is Replacing Spartina anglica in Coastal China. Estuar. Coast. Shelf Sci. 2007, 74, 437–448. [Google Scholar] [CrossRef]
- Nwobi, C.J.; Williams, M. Natural and Anthropogenic Variation of Stand Structure and Aboveground Biomass in Niger Delta Mangrove Forests. Front. For. Glob. Change 2021, 4, 746671. [Google Scholar] [CrossRef]
- Guimarães Sampaio, J.A.; Gonçalves Reis, C.R.; Cunha-Lignon, M.; Nardoto, G.B.; Salemi, L.F. Plant Invasion Affects Vegetation Structure and Sediment Nitrogen Stocks in Subtropical Mangroves. Mar. Environ. Res. 2021, 172, 105506. [Google Scholar] [CrossRef]
- Aguilera, A.G.; Alpert, P.; Dukes, J.S.; Harrington, R. Impacts of the Invasive Plant Fallopia japonica (Houtt.) on Plant Communities and Ecosystem Processes. Biol. Invasions 2010, 12, 1243–1252. [Google Scholar] [CrossRef]
- Shin, W.; Oh, M.; Hong, J.-S.; Byun, C.; Lee, E.J. Early Invasion of Common Cordgrass (Spartina anglica) Increases Belowground Biomass and Decreases Macrofaunal Density and Diversity in a Tidal Flat Marsh. Biol. Invasions 2022, 24, 3615–3629. [Google Scholar] [CrossRef]
- Opdekamp, W.; Beauchard, O.; Backx, H.; Franken, F.; Cox, T.J.S.; van Diggelen, R.; Meire, P. Effects of Mowing Cessation and Hydrology on Plant Trait Distribution in Natural Fen Meadows. Acta Oecologica-Int. J. Ecol. 2012, 39, 117–127. [Google Scholar] [CrossRef]
- Howison, R.A.; Olff, H.; Steever, R.; Smit, C. Large Herbivores Change the Direction of Interactions within Plant Communities along a Salt Marsh Stress Gradient. J. Veg. Sci. 2015, 26, 1159–1170. [Google Scholar] [CrossRef]
- Sonnier, G.; Quintana-Ascencio, P.F.; Bohlen, P.J.; Fauth, J.E.; Jenkins, D.G.; Boughton, E.H. Pasture Management, Grazing, and Fire Interact to Determine Wetland Provisioning in a Subtropical Agroecosystem. Ecosphere 2020, 11, e03209. [Google Scholar] [CrossRef]
- Song, T.; An, Y.; Tong, S.; Zhang, W.; Wang, X.; Wang, L.; Jiang, L. Soil Water Conditions Together with Plant Nitrogen Acquisition Strategies Control Vegetation Dynamics in Semi-Arid Wetlands Undergoing Land Management Changes. Catena 2023, 227, 107115. [Google Scholar] [CrossRef]
- Graversen, A.E.L.; Banta, G.T.; Masque, P.; Krause-Jensen, D. Carbon Sequestration Is Not Inhibited by Livestock Grazing in Danish Salt Marshes. Limnol. Oceanogr. 2022, 67, S19–S35. [Google Scholar] [CrossRef]
- Kuijper, D.P.J.; Dubbeld, J.; Bakker, J.P. Competition between Two Grass Species with and without Grazing over a Productivity Gradient. Plant Ecol. 2005, 179, 237–246. [Google Scholar] [CrossRef]
- Lodge, K.A.; Tyler, A.C. Divergent Impact of Grazing on Plant Communities of Created Wetlands with Varying Hydrology and Antecedent Land Use. Wetl. Ecol. Manag. 2020, 28, 797–813. [Google Scholar] [CrossRef]
- Meirland, A.; Bouvet, A.; Rybarczyk, H.; Dubois, F.; Chabrerie, O. Effects of Sheep Grazing on Salt-Marsh Plant Communities in the Bay of Somme (France). Rev. Ecol.-Terre Vie 2013, 68, 319–333. [Google Scholar] [CrossRef]
- Grazing as a Management Tool for Controlling Phragmites australis and Restoring Native Plant Biodiversity in Wetlands. Available online: https://webofscience.clarivate.cn/wos/alldb/full-record/PQDT:54467902 (accessed on 21 June 2024).
- Impacts of Cattle Grazing as a Tool to Control Phragmites australis in Wetlands on Nitrogen, Phosphorus, and Carbon. Available online: https://webofscience.clarivate.cn/wos/alldb/full-record/PQDT:61189275 (accessed on 21 May 2024).
- Teuber, L.M.; Hoelzel, N.; Fraser, L.H. Livestock Grazing in Intermountain Depressional Wetlands-Effects on Plant Strategies, Soil Characteristics and Biomass. Agric. Ecosyst. Environ. 2013, 175, 21–28. [Google Scholar] [CrossRef]
- Harvey, R.J.; Garbutt, A.; Hawkins, S.J.; Skov, M.W. No Detectable Broad-Scale Effect of Livestock Grazing on Soil Blue-Carbon Stock in Salt Marshes. Front. Ecol. Evol. 2019, 7, 151. [Google Scholar] [CrossRef]
- Gao, Y.; Giese, M.; Brueck, H.; Yang, H.; Li, Z. The Relation of Biomass Production with Leaf Traits Varied under Different Land-use and Precipitation Conditions in an Inner Mongolia Steppe. Ecol. Res. 2013, 28, 1029–1043. [Google Scholar] [CrossRef]
- Kozub, Ł.; Goldstein, K.; Dembicz, I.; Wilk, M.; Wyszomirski, T.; Kotowski, W. To Mow or Not to Mow? Plant Functional Traits Help to Understand Management Impact on Rich Fen Vegetation. Appl. Veg. Sci. 2019, 22, 27–38. [Google Scholar] [CrossRef]
- D’Astous, A.; Poulin, M.; Aubin, I.; Rochefort, L. Using Functional Diversity as an Indicator of Restoration Success of a Cut-over Bog. Ecol. Eng. 2013, 61, 519–526. [Google Scholar] [CrossRef]
- Laine, A.M.; Mehtatalo, L.; Tolvanen, A.; Frolking, S.; Tuittila, E.-S. Impacts of Drainage, Restoration and Warming on Boreal Wetland Greenhouse Gas Fluxes. Sci. Total Environ. 2019, 647, 169–181. [Google Scholar] [CrossRef]
- Munir, T.M.; Xu, B.; Perkins, M.; Strack, M. Responses of Carbon Dioxide Flux and Plant Biomass to Water Table Drawdown in a Treed Peatland in Northern Alberta: A Climate Change Perspective. Biogeosciences 2014, 11, 807–820. [Google Scholar] [CrossRef]
- Cao, R.; Wei, X.; Yang, Y.; Xi, X.; Wu, X. The Effect of Water Table Decline on Plant Biomass and Species Composition in the Zoige Peatland: A Four-Year Situ Field Experiment. Agric. Ecosyst. Environ. 2017, 247, 389–395. [Google Scholar] [CrossRef]
- Yuan, J.; Wang, P.; Weiner, J.; Bian, H.; Tang, Z.; Sheng, L. The Effects of Soil Drying on the Growth of a Dominant Peatland Species, Carex Lasiocarpa. Wetlands 2017, 37, 1135–1143. [Google Scholar] [CrossRef]
- Orella, J.; Africa, D.R.; Bustillo, C.H.; Pascua, N.; Marquez, C.; Adornado, H.; Aguilos, M. Above-and-Belowground Carbon Stocks in Two Contrasting Peatlands in the Philippines. Forests 2022, 13, 303. [Google Scholar] [CrossRef]
- Weston, L.M.; Mattingly, K.Z.; Day, C.T.C.; Hovick, S.M. Potential Local Adaptation in Populations of Invasive Reed Canary Grass (Phalaris arundinacea) across an Urbanization Gradient. Ecol. Evol. 2021, 11, 11457–11476. [Google Scholar] [CrossRef] [PubMed]
- Alongi, D.M.; de Carvalho, N.A. The Effect of Small-Scale Logging on Stand Characteristics and Soil Biogeochemistry in Mangrove Forests of Timor Leste. For. Ecol. Manag. 2008, 255, 1359–1366. [Google Scholar] [CrossRef]
- Zhang, S.; Xu, H.; Zhang, Y.; Li, Y.; Wei, J.; Pei, H. Variation of Phytoplankton Communities and Their Driving Factors along a Disturbed Temperate River-to-Sea Ecosystem. Ecol. Indic. 2020, 118, 106776. [Google Scholar] [CrossRef]
- Deegan, L.A.; Johnson, D.S.; Warren, R.S.; Peterson, B.J.; Fleeger, J.W.; Fagherazzi, S.; Wollheim, W.M. Coastal Eutrophication as a Driver of Salt Marsh Loss. Nature 2012, 490, 388–392. [Google Scholar] [CrossRef]
- Yu, O.T.; Chmura, G.L. Soil Carbon May Be Maintained under Grazing in a St Lawrence Estuary Tidal Marsh. Environ. Conserv. 2009, 36, 312–320. [Google Scholar] [CrossRef]
- Shen, Y.-L.; Zhang, S.-Y.; Yuan, X.-F.; Sun, K.; Cai, J.-F.; Xue, J.-J.; Zhang, Y.; A, S.-H.; Yang, L.-J.; Cheng, R.; et al. Flat-Leaf Submerged Plants Are More Sensitive to Invasion Intensity and Water Nutrition Levels than Needle-Leaf Ones. Hydrobiologia 2023, 850, 3849–3863. [Google Scholar] [CrossRef]
- Sun, J.; Javed, Q.; Azeem, A.; Ullah, I.; Saifullah, M.; Kama, R.; Du, D. Fluctuated Water Depth with High Nutrient Concentrations Promote the Invasiveness of Wedelia trilobata in Wetland. Ecol. Evol. 2020, 10, 832–842. [Google Scholar] [CrossRef]
- Gong, H.; Han, Y.; Li, J.; Liu, Z.; Hou, R.; Zhang, Y.; Dou, W.; Wang, B.; Ouyang, Z. Responses of Phragmites australis to Nitrogen Addition along Salinity Gradients in Coastal Saline-Alkali Soil. Land 2022, 11, 2320. [Google Scholar] [CrossRef]
- Ots, K.; Tilk, M.; Aguraijuja, K. The Effect of Oil Shale Ash and Mixtures of Wood Ash and Oil Shale Ash on the Above- and Belowground Biomass Formation of Silver Birch and Scots Pine Seedlings on a Cutaway Peatland. Ecol. Eng. 2017, 108, 296–306. [Google Scholar] [CrossRef]
- Azeem, A.; Sun, J.; Javed, Q.; Jabran, K.; Du, D. The Effect of Submergence and Eutrophication on the Trait’s Performance of Wedelia trilobata over Its Congener Native Wedelia Chinensis. Water 2020, 12, 934. [Google Scholar] [CrossRef]
- Zhang, D.J.; Liu, X.P.; Tian, J.P.; Wang, Z.; Wei, Y.X.; Wang, H.; Shi, X.X.; He, W.J. An Experimental Study on the Growth and Physiological Responses of Carex Schmidtii to Excess Nitrogen and Phosphorus. Appl. Ecol. Environ. Res. 2023, 21, 5107–5118. [Google Scholar] [CrossRef]
- Thiébaut, G.; Rodriguez-Perez, H.; O, J. Reciprocal Interactions between the Native Mentha Aquatica and the Invasive Ludwigia Hexapetala in an Outdoor Experiment. Aquat. Bot. 2019, 157, 17–23. [Google Scholar] [CrossRef]
- Purcell, A.S.T.; Lee, W.G.; Tanentzap, A.J.; Laughlin, D.C. Fine Root Traits Are Correlated with Flooding Duration While Aboveground Traits Are Related to Grazing in an Ephemeral Wetland. Wetlands 2019, 39, 291–302. [Google Scholar] [CrossRef]
- Born, J.; Michalski, S.G. Trait Expression and Signatures of Adaptation in Response to Nitrogen Addition in the Common Wetland Plant Juncus effusus. PLoS ONE 2019, 14, e0209886. [Google Scholar] [CrossRef]
- Mozdzer, T.J.; Caplan, J.S. Complementary Responses of Morphology and Physiology Enhance the Stand-scale Production of a Model Invasive Species under Elevated CO2 and Nitrogen. Funct. Ecol. 2018, 32, 1784–1796. [Google Scholar] [CrossRef]
- Su, H.; Chen, J.; Wu, Y.; Chen, J.; Guo, X.; Yan, Z.; Tian, D.; Fang, J.; Xie, P. Morphological Traits of Submerged Macrophytes Reveal Specific Positive Feedbacks to Water Clarity in Freshwater Ecosystems. Sci. Total Environ. 2019, 684, 578–586. [Google Scholar] [CrossRef]
- Zhang, L.; Zhao, L.; Yi, H.; Lan, S.; Chen, L.; Han, G. Nitrogen Addition Alters Plant Growth in China’s Yellow River Delta Coastal Wetland through Direct and Indirect Effects. Front. Plant Sci. 2022, 13, 1016949. [Google Scholar] [CrossRef]
- Feller, I.C.; Lovelock, C.E.; Mckee, K.L. Nutrient Addition Differentially Affects Ecological Processes of Avicennia germinans in Nitrogen versus Phosphorus Limited Mangrove Ecosystems. Ecosystems 2007, 10, 347–359. [Google Scholar] [CrossRef]
- Henriot, C.P.; Cuenot, Q.; Levrey, L.-H.; Loup, C.; Chiarello, L.; Masclaux, H.; Bornette, G. Relationships between Key Functional Traits of the Waterlily Nuphar Lutea and Wetland Nutrient Content. PeerJ 2019, 7, e7861. [Google Scholar] [CrossRef]
- Neimane, S.; Celma, S.; Zusevica, A.; Lazdina, D.A.; Ievinsh, G. The Effect of Wood Ash Application on Growth, Leaf Morphological and Physiological Traits of Trees Planted in a Cutaway Peatland. Mires Peat 2021, 27, 22. [Google Scholar] [CrossRef]
- Lin, G.; Zeng, D.-H.; Mao, R. Traits and Their Plasticity Determine Responses of Plant Performance and Community Functional Property to Nitrogen Enrichment in a Boreal Peatland. Plant Soil 2020, 449, 151–167. [Google Scholar] [CrossRef]
- del Carmen Tercero, M.; Alvarez-Rogel, J.; Miguel Conesa, H.; Parraga-Aguado, I.; Nazaret Gonzalez-Alcaraz, M. Phosphorus Retention and Fractionation in an Eutrophic Wetland: A One-Year Mesocosms Experiment under Fluctuating Flooding Conditions. J. Environ. Manag. 2017, 190, 197–207. [Google Scholar] [CrossRef] [PubMed]
- Fu, H.; Yuan, G.; Jeppesen, E. Trait-Based Community Assembly of Submersed Macrophytes Subjected to Nutrient Enrichment in Freshwater Lakes: Do Traits at the Individual Level Matter? Ecol. Indic. 2020, 110, 105895. [Google Scholar] [CrossRef]
- Lovelock, C.E.; Feller, I.C.; Ellis, J.; Schwarz, A.M.; Hancock, N.; Nichols, P.; Sorrell, B. Mangrove Growth in New Zealand Estuaries: The Role of Nutrient Enrichment at Sites with Contrasting Rates of Sedimentation. Oecologia 2007, 153, 633–641. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, B. The Influence of Nutrient Addition on the Invasion of Spartina alterniflora towards the Non-Tidal Wetlands in the Chinese Yellow River Delta. J. Coast. Conserv. 2019, 23, 623–631. [Google Scholar] [CrossRef]
- Filep, R.; Lengyel, A.; Cook, B.J.; Farkas, A.; Nagy, K.; Nagy, D.U.; Imri, A.; Czako-Ver, K.; Pal, R.W. Helianthus tuberosus at Home and Away: Stronger Ecological Impacts in Invaded than in Native Range Are Not Explained by Arbuscular Mycorrhizal Colonization. Preslia 2021, 93, 363–376. [Google Scholar] [CrossRef]
- Guo, W.-Y.; Lambertini, C.; Guo, X.; Li, X.-Z.; Eller, F.; Brix, H. Phenotypic Traits of the Mediterranean Phragmites australis M1 Lineage: Differences between the Native and Introduced Ranges. Biol. Invasions 2016, 18, 2551–2561. [Google Scholar] [CrossRef]
- Maskell, L.C.; Bullock, J.M.; Smart, S.M.; Thompson, K.; Hulme, P.E. The Distribution and Habitat Associations of Non-Native Plant Species in Urban Riparian Habitats. J. Veg. Sci. 2006, 17, 499–508. [Google Scholar] [CrossRef]
- Reutimann, P.; Billeter, R.; Dengler, J. Effects of Grazing versus Mowing on the Vegetation of Wet Grasslands in the Northern Pre-Alps, Switzerland. Appl. Veg. Sci. 2023, 26, e12706. [Google Scholar] [CrossRef]
- Danet, A.; Anthelme, F.; Gross, N.; Kéfi, S. Effects of Indirect Facilitation on Functional Diversity, Dominance and Niche Differentiation in Tropical Alpine Communities. J. Veg. Sci. 2018, 29, 835–846. [Google Scholar] [CrossRef]
- Gao, J.; Liu, M.; Shi, S.; Liu, Y.; Duan, Y.; Lv, X.; Bohu, T.; Li, Y.; Hu, Y.; Wang, N.; et al. Disentangling Responses of the Subsurface Microbiome to Wetland Status and Implications for Indicating Ecosystem Functions. Microorganisms 2021, 9, 211. [Google Scholar] [CrossRef] [PubMed]
- Vuorinen, K.E.M.; Austrheim, G.; Mysterud, A.; Gya, R.; Vandvik, V.; Grytnes, J.; Speed, J.D.M. Functional Traits of Alpine Plant Communities Show Long-term Resistance to Changing Herbivore Densities. Ecosphere 2021, 12, e03887. [Google Scholar] [CrossRef]
- Sonnier, G.; Boughton, E.H.; Whittington, R. Long-term Response of Wetland Plant Communities to Management Intensity, Grazing Abandonment, and Prescribed Fire. Ecol. Appl. 2023, 33, e2732. [Google Scholar] [CrossRef] [PubMed]
- Lesage, J.C.; Hayes, G.F.; Holl, K.D. Native Annual Forbs Decline in California Coastal Prairies over 15 Years despite Grazing. PLoS ONE 2022, 17, e0278608. [Google Scholar] [CrossRef]
- Danet, A.; Kéfi, S.; Meneses, R.I.; Anthelme, F. Nurse Species and Indirect Facilitation through Grazing Drive Plant Community Functional Traits in Tropical Alpine Peatlands. Ecol. Evol. 2017, 7, 11265–11276. [Google Scholar] [CrossRef]
- Bass, J.; Granse, D.; Hache, I.; Jensen, K.; Karius, V.; Minden, V.; Stock, M.; Suchrow, S.; Kleyer, M. Plant Traits Affect Vertical Accretion of Salt Marshes. Estuar. Coast. Shelf Sci. 2022, 276, 108010. [Google Scholar] [CrossRef]
- Thevs, N.; Zerbe, S.; Gahlert, E.; Mijit, M.; Succow, M. Productivity of Reed Phragmites australisTrin. Ex Steud.in Continental-Arid NW China in Relation to Soil, Groundwater, and Land-Use. J. Appl. Bot. Food Qual.-Angew. Bot. 2007, 81, 62–68. [Google Scholar]
- Kolari, T.H.M.; Kumpula, T.; Verdonen, M.; Forbes, B.C.; Tahvanainen, T. Reindeer Grazing Controls Willows but Has Only Minor Effects on Plant Communities in Fennoscandian Oroarctic Mires. Arct. Antarct. Alp. Res. 2019, 51, 506–520. [Google Scholar] [CrossRef]
- Klimkowska, A.; Bekker, R.M.; Van Diggelen, R.; Kotowski, W. Species Trait Shifts in Vegetation and Soil Seed Bank during Fen Degradation. Plant Ecol. 2010, 206, 59–82. [Google Scholar] [CrossRef]
- Goldstein, K.; Kozub, Ł.; Wyszomirski, T.; Wilk, M.; Brzezińska, K.; Jarzombkowski, F.; Jabłońska, E.; Bartoszuk, H.; Kotowski, W. Plant Functional Traits Reveal Strong Effects of Anoxia and Nutrient Limitation on Species Pool Filtering in a Riverine Rich Fen System. Plant Ecol. Divers. 2019, 12, 457–474. [Google Scholar] [CrossRef]
- Khan, A.; Karim, M.R.; Mohammed, M.; Kibria, M.G.; Sinha, K.; Sultana, F.; Mukul, S.A.; Arfin-Khan, M.A.S. Anthropogenic Disturbance Modifies Tree Functional Traits in the Only Remnant Swamp Forest of Bangladesh. Front. Ecol. Evol. 2023, 11, 1062764. [Google Scholar] [CrossRef]
- Ali, H.E.; Bucher, S.F. Ecological Impacts of Megaprojects: Species Succession and Functional Composition. Plants 2021, 10, 2411. [Google Scholar] [CrossRef] [PubMed]
- de Araujo, I.G.R.; Cazetta, J.O.; Rodrigues, R.C.; Sanches, S.S.C.; Costa, C.d.S.; de Sousa, F.B.F. The Amazonian Capim-Acu Is Less Nitrogen Dependent than Antelope Grass to Produce Leaf Dry Matter. Rev. Bras. Eng. Agric. E Ambient. 2021, 25, 124–131. [Google Scholar] [CrossRef]
- Tanu, F.Z.; Asakura, Y.; Takahashi, S.; Hinokidani, K.; Nakanishi, Y. Variation in Foliar =15=N Reflects Anthropogenic Nitrogen Absorption Potential of Mangrove Forests. Forests 2020, 11, 133. [Google Scholar] [CrossRef]
- Carevic, F.S.; Anderson, M.; Muñoz, A. Is the Temporary Grazing Exclusion a Good Management Alternative for Arid Peatlands. Arid Land Res. Manag. 2019, 33, 339–349. [Google Scholar] [CrossRef]
- Murphy, M.; Laiho, R.; Moore, T.R. Effects of Water Table Drawdown on Root Production and Aboveground Biomass in a Boreal Bog. Ecosystems 2009, 12, 1268–1282. [Google Scholar] [CrossRef]
- Wang, T.; Hu, J.; Gao, Y.; Yu, D.; Liu, C. Disturbance, Trait Similarities, and Trait Advantages Facilitate the Invasion Success of Alternanthera philoxeroides (Mart.) Griseb. Clean–Soil Air Water 2017, 45, 1600378. [Google Scholar] [CrossRef]
- Wang, X.; Yang, J.; Gao, Y.; Li, J.; Yang, Y.; Wang, P. Allocation, Morphology, Physiology: Multiple Aspects of above- and below-Ground Responses to Water Table Stress, Duration of Drainage in Alpine Wetland Plants (Carex muliensis). Plant Soil 2024, 505, 703–718. [Google Scholar] [CrossRef]
- Rezapour, A.; Truu, M.; Maddison, M.; Rohula-Okunev, G.; Tullus, A.; Uri, V.; Mander, U.; Ostonen, I. Morphological Variation in Absorptive Roots in Downy Birch (Betula Pubescens) and Norway Spruce (Picea Abies) Forests Growing on Drained Peat Soils. Forests 2022, 13, 112. [Google Scholar] [CrossRef]
- Xu, X.; Liu, H.; Liu, Y.; Zhou, C.; Pan, L.; Fang, C.; Nie, M.; Li, B. Human Eutrophication Drives Biogeographic Salt Marsh Productivity Patterns in China. Ecol. Appl. 2020, 30, e02045. [Google Scholar] [CrossRef]
- Stefanidis, K.; Papastergiadou, E. Linkages between Macrophyte Functional Traits and Water Quality: Insights from a Study in Freshwater Lakes of Greece. Water 2019, 11, 1047. [Google Scholar] [CrossRef]
- Liu, J.; Zhao, B.; Li, Y.; Deng, X.; Qiao, Y.; Xu, J.; Xu, S. Palatability of Mangrove Leaves to Invasive Apple Snails: The Relation between Feeding Electivity and Multiple Plant Characteristics. Aquat. Invasions 2022, 17, 277–299. [Google Scholar] [CrossRef]
- Hao, L.; Sun, G.; Liu, Y.; Wan, J.; Qin, M.; Qian, H.; Liu, C.; Zheng, J.; John, R.; Fan, P.; et al. Urbanization Dramatically Altered the Water Balances of a Paddy Field-Dominated Basin in Southern China. Hydrol. Earth Syst. Sci. 2015, 19, 3319–3331. [Google Scholar] [CrossRef]
- Pan, Y.; Zhang, X.; Song, K.; Da, L. Applying Trait-Based Method to Investigate the Relationship between Macrophyte Communities and Environmental Conditions in a Eutrophic Freshwater Lake, China. Aquat. Bot. 2017, 142, 16–24. [Google Scholar] [CrossRef]
- Li, F.-L.; Yang, L.; Zan, Q.-J.; Shin, P.-K.S.; Cheung, S.-G.; Wong, Y.-S.; Tam, N.F.-Y.; Lei, A.-P. Does Energetic Cost for Leaf Construction in Sonneratia Change after Introduce to Another Mangrove Wetland and Differ from Native Mangrove Plants in South China? Mar. Pollut. Bull. 2017, 124, 1071–1077. [Google Scholar] [CrossRef]
- Kotowski, W.; Jablonska, E.; Bartoszuk, H. Conservation Management in Fens: Do Large Tracked Mowers Impact Functional Plant Diversity? Biol. Conserv. 2013, 167, 292–297. [Google Scholar] [CrossRef]
- Milani, G.; Kneubühler, M.; Tonolla, D.; Doering, M.; Wiesenberg, G.L.B.; Schaepman, M.E. Remotely Sensing Variation in Ecological Strategies and Plant Traits of Willows in Perialpine Floodplains. J. Geophys. Res. Biogeosciences 2019, 124, 2090–2106. [Google Scholar] [CrossRef]
- Ichie, T.; Yoneyama, A.; Hashimoto, T.; Tanaka-Oda, A.; Kusin, K.; Kenzo, T. Drainage Effects on Leaf Traits of Trees in Tropical Peat Swamp Forests in Central Kalimantan, Indonesia. Tropics 2019, 28, 1–11. [Google Scholar] [CrossRef]
- Choi, W.-J.; Chang, S.X.; Bhatti, J.S. Drainage Affects Tree Growth and C and N Dynamics in a Minerotrophic Peatland. Ecology 2007, 88, 443–453. [Google Scholar] [CrossRef]
- Yu, S.; Chen, W.; He, X.; Liu, Z.; Song, H.; Ye, Y.; Huang, Y.; Jia, L. A Comparative Study on Nitrogen and Phosphorus Concentration Characteristics of Twelve Riparian Zone Species from Upstream of Hunhe River. Clean-Soil Air Water 2014, 42, 408–414. [Google Scholar] [CrossRef]
- Li, X.; Talbot, J.; King, J.; Wang, M. Effects of Road Dust on Vegetation Composition and Surface Chemistry of Three Ombrotrophic Peatlands in Eastern Canada. Geoderma 2023, 439, 116665. [Google Scholar] [CrossRef]
- Wei, T.; Dongjie, Z.; Guanglan, C.; Wanling, X.; Weihong, Z.; Lei, Q. Effect of Agricultural Intervention on Nutrient Stoichiometry from Root to Leaf in the Helophyte Species Glyceria spiculosa. Front. Ecol. Evol. 2022, 10, 964198. [Google Scholar] [CrossRef]
- Fauzi, A.; Skidmore, A.K.; Heitkonig, I.M.A.; van Gils, H.; Schlerf, M. Eutrophication of Mangroves Linked to Depletion of Foliar and Soil Base Cations. Environ. Monit. Assess. 2014, 186, 8487–8498. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Larmola, T.; Murphy, M.T.; Moore, T.R.; Bubier, J.L. Stoichiometric Response of Shrubs and Mosses to Long-Term Nutrient (N, P and K) Addition in an Ombrotrophic Peatland. Plant Soil 2016, 400, 403–416. [Google Scholar] [CrossRef]
- Munir, T.M.; Khadka, B.; Xu, B.; Strack, M. Mineral Nitrogen and Phosphorus Pools Affected by Water Table Lowering and Warming in a Boreal Forested Peatland. Ecohydrology 2017, 10, e1893. [Google Scholar] [CrossRef]
- Wang, S.; Du, Y.; Liu, S.; Pan, J.; Wu, F.; Wang, Y.; Wang, Y.; Li, H.; Dong, Y.; Wang, Z.; et al. Response of C:N:P Stoichiometry to Long-Term Drainage of Peatlands: Evidence from Plant, Soil, and Enzyme. Sci. Total Environ. 2024, 919, 170688. [Google Scholar] [CrossRef]
- Limpens, J.; Heijmans, M.M.P.D. Swift Recovery of Sphagnum Nutrient Concentrations after Excess Supply. Oecologia 2008, 157, 153–161. [Google Scholar] [CrossRef]
- Koontz, M.B.; Koontz, J.M.; Pezeshki, S.R.; Moore, M. Nutrient and Growth Responses of Leersia Oryzoides, Rice Cutgrass, To Varying Degrees of Soil Saturation and Water Nitrogen Concentration. J. Plant Nutr. 2013, 36, 2236–2258. [Google Scholar] [CrossRef]
- Kitti, H.; Forbes, B.C.; Oksanen, J. Long- and Short-Term Effects of Reindeer Grazing on Tundra Wetland Vegetation. Polar Biol. 2009, 32, 253–261. [Google Scholar] [CrossRef]
- Allen, B.E.; Azeria, E.T.; Bried, J.T. Linking Functional Diversity, Trait Composition, Invasion, and Environmental Drivers in Boreal Wetland Plant Assemblages. J. Veg. Sci. 2021, 32, e13073. [Google Scholar] [CrossRef]
- Scharfy, D.; Eggenschwiler, H.; Venterink, O.H.; Edwards, P.J.; Guesewell, S. The Invasive Alien Plant Species Solidago Gigantea Alters Ecosystem Properties across Habitats with Differing Fertility. J. Veg. Sci. 2009, 20, 1072–1085. [Google Scholar] [CrossRef]
- Proença, B.; Nez, T.; Poli, A.; Ciutat, A.; Devaux, L.; Sottolichio, A.; De Montaudouin, X.; Michalet, R. Intraspecific Facilitation Explains the Spread of the Invasive Engineer Spartina anglica in Atlantic Salt Marshes. J. Veg. Sci. 2019, 30, 212–223. [Google Scholar] [CrossRef]
- Qing, H.; Cai, Y.; Xiao, Y.; Yao, Y.; An, S. Nitrogen Uptake and Use Efficiency of Invasive Spartina alterniflora and Native Phragmites australis: Effect of Nitrogen Supply. Clean-Soil Air Water 2015, 43, 305–311. [Google Scholar] [CrossRef]
- Liao, C.; Luo, Y.; Jiang, L.; Zhou, X.; Wu, X.; Fang, C.; Chen, J.; Li, B. Invasion of Spartina alterniflora Enhanced Ecosystem Carbon and Nitrogen Stocks in the Yangtze Estuary, China. Ecosystems 2007, 10, 1351–1361. [Google Scholar] [CrossRef]
- Liu, W.; Wang, W.; Zhang, Y. Differences in Leaf Traits of Spartina alterniflora between Native and Invaded Habitats: Implication for Evolution of Alien Species Competitive Ability Increase. Ecol. Indic. 2022, 138, 108799. [Google Scholar] [CrossRef]
- Tong, C.; Zhang, L.; Wang, W.; Gauci, V.; Marrs, R.; Liu, B.; Jia, R.; Zeng, C. Contrasting Nutrient Stocks and Litter Decomposition in Stands of Native and Invasive Species in a Sub-Tropical Estuarine Marsh. Environ. Res. 2011, 111, 909–916. [Google Scholar] [CrossRef]
- Kurokawa, H.; Peltzer, D.A.; Wardle, D.A. Plant Traits, Leaf Palatability and Litter Decomposability for Co-occurring Woody Species Differing in Invasion Status and Nitrogen Fixation Ability. Funct. Ecol. 2010, 24, 513–523. [Google Scholar] [CrossRef]
- Martina, J.P.; Hamilton, S.K.; Turetsky, M.R.; Phillippo, C.J. Organic Matter Stocks Increase with Degree of Invasion in Temperate Inland Wetlands. Plant Soil 2014, 385, 107–123. [Google Scholar] [CrossRef]
- Holdredge, C.; Bertness, M.D.; von Wettberg, E.; Silliman, B.R. Nutrient Enrichment Enhances Hidden Differences in Phenotype to Drive a Cryptic Plant Invasion. Oikos 2010, 119, 1776–1784. [Google Scholar] [CrossRef]
- Li, Y.; Niu, S.; Yu, G. Aggravated Phosphorus Limitation on Biomass Production under Increasing Nitrogen Loading: A Meta-analysis. Glob. Change Biol. 2016, 22, 934–943. [Google Scholar] [CrossRef]



| Category | Organs | Trait Name | Abbreviation |
|---|---|---|---|
| Biomass traits | Whole plant | Aboveground biomass | AGB |
| Belowground biomass | BGB | ||
| Total biomass | TB | ||
| Dry matter content | DMC | ||
| Root–shoot ratio | RSR | ||
| Leaf | Leaf dry matter content | LDMC | |
| Leaf mass | LM | ||
| Leaf mass ratio | LMR | ||
| Leaf mass fraction | LMF | ||
| Stem | Stem dry matter content | SDMC | |
| Stem mass | SM | ||
| Stem mass ratio | SMR | ||
| Stem weight ratio | SWR | ||
| Rhizomatic biomass | Rhizomatic biomass | ||
| Root | Root dry matter content | RDMC | |
| Root mass | RM | ||
| Root mass ratio | RMR | ||
| Fine root biomass | FRB | ||
| Morphological traits | Whole plant | Plant height | H |
| Leaf | Leaf area | LA | |
| Leaf area index | LAI | ||
| Specific leaf area | SLA | ||
| Leaf number | Leaf number | ||
| Leaf thickness | LT | ||
| Leaf length | LL | ||
| Leaf width | LW | ||
| Leaf tissue density | LTD | ||
| Stem | Stem density | Stem density | |
| Number of branches | Number of branches | ||
| Stem diameter | SD | ||
| Stem count | Stem count | ||
| Node number | Node number | ||
| Root | Root diameter | RD | |
| Root length | RL | ||
| Root length density | RLD | ||
| Root tissue density | RTD | ||
| Root surface area | RSA | ||
| Specific root length | SRL | ||
| Specific root area | SRA | ||
| Chemical traits | Whole plant | Total C | TCC |
| Total N | TNC | ||
| Total P | TPC | ||
| Total C:N | Total C:N | ||
| Total C:P | Total C:P | ||
| Total N:P | Total N:P | ||
| Leaf | Leaf C | LCC | |
| Leaf N | LNC | ||
| Leaf P | LPC | ||
| Leaf C:N | Leaf C:N | ||
| Leaf C:P | Leaf C:P | ||
| Leaf N:P | Leaf N:P | ||
| Stem | Stem C | SCC | |
| Stem N | SNC | ||
| Stem P | SPC | ||
| Stem C:N | Stem C:N | ||
| Stem C:P | Stem C:P | ||
| Stem N:P | Stem N:P | ||
| Root | Root C | RCC | |
| Root N | RNC | ||
| Root P | RPC | ||
| Root C:N | Root C:N | ||
| Root C:P | Root C:P | ||
| Root N:P | Root N:P | ||
| Physiological traits | Whole plant | Growth rate | GR |
| Water-use efficiency | WUE | ||
| Leaf | Chlorophyllin content | CT | |
| Photosynthetic efficiency | Pn | ||
| Stomatal conductance | Gs |
| Trait | Definition and Functional Role | Direction of Response of Functional Traits to Anthropogenic Disturbances (Reference Number) | ||||
|---|---|---|---|---|---|---|
| Nutrient enrichment | Invasive alien species | Vegetation removal | Drainage | Other | ||
| AGB | Primary production, carbon storage | [14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64] [31,37,41,50,65,66] [14,65,66,67,68,69,70] | Native: [34,41,71,72,73,74,75]Non-native: [41,76] [77] | [61,78,79,80,81] [54,81,82,83,84,85,86,87,88,89,90,91,92] [35] | [36,39,92,93,94,95] [66,95,96] [95] | [39] [74,97,98,99,100] |
| BGB | Nutrient uptake and storage, carbon storage, stress tolerance | [14,15,18,19,28,31,32,33,38,47,48,50,56,59,61,62] [15,21,24,31,41,65,66,67,101] [14,16,17,28,45,50] [64] | Native: [41,71,72]Non-native: [77] [41] | [102] [61,84,88] [82,89] | [66,94] [96] [95] | [98] |
| TB | Primary production, carbon storage | [30,38,48,58,60,103,104,105,106,107] [104,108] [30] | Native: [71,72,73]Total: [109] | [94] [96] | ||
| DMC | Dry mass of plant per unit fresh mass (g·g−1); Physical resistance, conservation, stress tolerance | [106] | [110] | |||
| RSR | Ratio of dry root mass to dry shoot mass or total plant mass; Nutrient and water uptake, anoxic stress tolerance | [31,43,53,62,107] [16,17,22,31,47,57,58,59,61,101,111] [36] [64] | Native: [109] | [83,102] [61] [82] | [66,94] [36] | [98] |
| H | Dispersal distance, light capture, aboveground competition; emergent species grow tall to stay above the water level; some species exhibit plastic shoot elongation in response to flooding stress | [17,21,23,25,26,27,29,32,33,34,36,37,38,39,40,43,48,55,56,57,58,59,60,62,63,69,101,103,105,106,107,111,112,113,114,115,116,117,118] [26,37,65,66,108,119,120] [121,122] | Native: [34,71,72,73]Non-native: [77,123,124]Total: [125] | [79,84,88,126,127] [78,81,82,84,85,86,88,89,91,110,127,128,129,130,131,132,133,134,135] [132] | [36,39,136]![]() [66,96,128,137] | [39,138] [98] [139] |
| LDMC | Dry mass of leaf per unit fresh leaf mass (g·g−1); Physical resistance, conservation, leaf life span, stress tolerance, leaf economics | [111,140] [26,29,56,118,120,141] [26,108] | [90,129,130] [132,142] [68,132] | [139] | ||
| LM | Photosynthesis, primary production, carbon storage | [30,57,101,106,111,117] [108,115] [30,119] | [102,133] | [96,143] | [98] | |
| LMR | Ratio of leaf mass to total plant mass; Estimates leaf construction cost and energy allocation strategy | [107,144] | [134] | |||
| LMF | The proportion of total plant mass allocated to a leaf; Total plant resources allocated to leaf functions (e.g., photosynthesis, absorption, respiration) | [145] | ||||
| SM | Dispersal and regeneration strategy, establishment success | [106,115] [119,122] | [133,135] | [143,36] | ||
| SWR | Ratio of leaf mass to total plant mass; Hydraulic and biophysical support | [57,62,107,115] | ||||
| Rhizomatic biomass | Anchoring, oxygen transport, recovery, stress (drought/flood) tolerance | [29,46,47,50,116,119] [69] [48] | Native: [73] | [96] | ||
| RDMC | Dry mass of root per unit fresh root mass (g·g−1); Nutrient uptake and storage, root lifespan, stress tolerance | [18] | [110] | |||
| RM | Nutrient and water uptake, water regulation, oxygen supply (radial oxygen loss) | [18,29,34,36,44,53,58,60,103,106] [22,30,57,69,111,119] [30] | Native: [73,109] | [81,83] | [36,66] [66,143,146] [143] | [98] [98] |
| RMR | Ratio of root mass to total plant mass; Energy allocation strategy | [38] [60] | [145] | [98] | ||
| FRB | Nutrient and water uptake, anchorage and stability, Oxygen transport | [50] | [94,143,146] [146] | |||
| LA | Light acquisition, energy balance, water balance, stress tolerance | [14,19,26,29,32,37,38,48,51,57,58,66,106,112,117,118,121,140,147,148] [19,37,108] [29] | Native: [73,149] | [90] [129,135] | [43,145] [66,96] | |
| LAI | Total one-sided leaf area per unit ground surface area; photosynthesis, transpiration, energy exchange | [27,35,40,43,113] | Native: [74] | [90] [35] | [93] | [74,99,150] |
| SLA | One-sided area of a fresh leaf divided by its dry mass (mm2·mg−1); Light capture, relative growth rate, photosynthetic rate, leaf life span, carbon assimilation, resource conservation, leaf economics | [19,23,26,37,57,62,66,107,115,118,119,144] [26,37,48,66,108,115,120,151] [29,46,60,112,117,147] | Non-native: [152]Total: [125] | [79,110,142,153] [129,130,131,142] [91] | [66,96,137] [66,145] | [46,98,138,154] [98,154] [139] |
| Leaf number | Architectural constraints, energy balance | [25,57,107,114,117] [114] | Non-native: [124] | [96] | ||
| LT | Physical strength, gas exchange, leaf lifespan, water and nutrient retention | [118,120] | Native: [73] | [127] [127,132] | [145,155] | |
| LL | Light acquisition, stress tolerance | [48,106,114] [108] [68] | ||||
| LW | Light acquisition, stress tolerance | [114] [108] | ||||
| Stem density | Physical structure resistance, stress tolerance | [16,17,33,41,44,55,65] [41,44] [27,44,69] | Native: [41,74]Non-native: [41,123] | [84] | [74] | |
| Number of branches | Photosynthesis, nutrient acquisition | [36,103,111] | Native: [73,103] | [36] | ||
| SD | Transport, construction, defense | [36] | Native: [71,73,74] | [134,135] | [35,156] | [74] |
| Stem count | Resource competition, restoration, stress tolerance | [29,56,60,111] [122] | [86] | |||
| Node number | Resource competition, restoration, stress tolerance | [103,107] | Native: [73,103] | |||
| RD | Resource absorption, hydraulic conductivities of roots, nutrient and water uptake, plant economics | [30,52,106] [58] | [145] | [98] | ||
| RL | Anchorage, nutrient and water uptake, transport oxygen | [18,58,66,107] [29,30] [30] | Native: [73] [71] | [145] [96,146] | [98] | |
| RLD | Length of roots per soil volume (cm·cm−3); Anchorage, nutrient and water uptake, stress tolerance | [67] | ||||
| RTD | Dry mass of root per unit volume of fresh root (g·cm−3); Nutrient acquisition strategy, construction, defense | [52] | [28] | [146] | ||
| RSA | Nutrient and water uptake, oxygen transport | [18] | [96] | |||
| SRL | Length of a root per unit dry mass (m·g −1); Nutrient and water uptake, root economics | [30] [67] [29,52] | [79,110] | [145,146] | [98] | |
| SRA | Surface area of a root per unit dry mass (cm2·g−1); Nutrient and water uptake, root economics | [146] | ||||
| TNC | Photosynthesis, resource acquisition | [33,42,55,67,157] | [80] [54,81] | |||
| TPC | Photosynthesis, resource acquisition | [42,55,157] | [80,81] | |||
| Total C:N | Nutrient acquisition, plant growth, stress tolerance | [28] | [80] | |||
| Total C:P | Nutrient adaptability, plant growth, stress tolerance | [28] [28] | [80] | |||
| Total N:P | Nutrient adaptability, plant growth, stress tolerance | [42] [42,48] | ||||
| LCC | Photosynthesis, resource acquisition | [14,43,114,158] [26,46] | [102] | [145] | ||
| LNC | Photosynthesis, resource acquisition, leaf economics | [14,19,24,26,32,37,43,45,46,49,51,53,54,62,63,66,68,69,101,111,115,118,144,147,158,159,160,161] [25,37,115,151,158] [26,52,70,144,161] | Native: [75] [149] [19]Non-native: [124] [76] | [134] [54,90,102] | [145,156,159] | |
| LPC | Photosynthesis, resource acquisition | [32,46,58,63,115,147,158,160,161] [49,58,158] [119,159] | [28] | [46] | ||
| Leaf C:N | Nutrient utilization efficiency, plant growth, stress tolerance | [26,38,58,116,158] [24,41,43,46,111,144] [41,114] | Native: [75] [41]Non-native: [41] | [156,162] [163] | ||
| Leaf C:P | Nutrient adaptability, plant growth | [43,58,158] [46] | [163] | [46] | ||
| Leaf N:P | Nutrient adaptability, plant growth, productivity | [14,24,25,32,158,159] [46,63] [160] | [159] [163] | [46] | ||
| SCC | Resource allocation, plant growth | [102] | ||||
| SNC | Photosynthesis, plant growth | [23,44,49,54,159] [164] | Non-native: [76] | [102] | [159] | |
| SPC | Nutrient storage and transport, plant growth, stress tolerance | [119] [49,164] [159] | [159] | |||
| Stem C:N | Nutrient utilization efficiency, plant growth, stress tolerance | [116] [47,50] | ||||
| Stem C:P | Nutrient utilization efficiency, plant growth, stress tolerance | [163] | ||||
| Stem N:P | Nutrient adaptability, plant growth | [159] | [163] | |||
| RCC | Energy storage, regeneration | [58] | [145] | |||
| RNC | Nutrient acquisition strategy | [50,52,53,54,56,58,159] | [54] | [159] [145] | ||
| RPC | Nutrient acquisition strategy | [119,159] [165] | [159] | |||
| Root C:N | Nutrient availability and uptake, stress tolerance | [58] [47,50,52,56,111] | ||||
| Root C:P | Nutrient utilization efficiency, plant growth, stress tolerance | [163] | ||||
| Root N:P | Nutrient adaptability, plant growth | [58] [159] | [163] | |||
| GR | Primary production, carbon storage | [34,40,43,46,48,56,58,59,62,104,106,111,112,115,116,117,121,164] [31,104,108,164] [57,121] | Native: [109] [34] | [80,90] | [156,162] | |
| WUE | Resource acquisition vs. conservation, energy balance | [58,60,62,112] | [155,156] | |||
| CT | Photosynthetic performance, tissue N | [14,37,60,62,104,105,112,148] [37,104,108,113,144] [144] | Native: [71] [71,149]Non-native: [124] | [96] | [98,154] | |
| Pn | Photosynthetic performance, plant growth | [19,38,58,59,62,104,112,121,144] [14,19,31,40,104] [117] | Non-native: [124] | [145] | ||
| Gs | Photosynthetic performance, plant growth | [62,104,112] [58,104] | ||||
), decrease (
), or no effect (
). (
) means first increased and then decreased, (
) means first decreased and then increased. Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, J.; Liu, C.; Peng, C.; Xie, B.; Liu, Z. Impacts of Anthropogenic Disturbances on the Functional Traits of Wetland Plants: A Retrospective Review of Studies Conducted Globally over the Past Two Decades. Ecologies 2025, 6, 85. https://doi.org/10.3390/ecologies6040085
Wu J, Liu C, Peng C, Xie B, Liu Z. Impacts of Anthropogenic Disturbances on the Functional Traits of Wetland Plants: A Retrospective Review of Studies Conducted Globally over the Past Two Decades. Ecologies. 2025; 6(4):85. https://doi.org/10.3390/ecologies6040085
Chicago/Turabian StyleWu, Jingqing, Cong Liu, Changhui Peng, Binggeng Xie, and Zelin Liu. 2025. "Impacts of Anthropogenic Disturbances on the Functional Traits of Wetland Plants: A Retrospective Review of Studies Conducted Globally over the Past Two Decades" Ecologies 6, no. 4: 85. https://doi.org/10.3390/ecologies6040085
APA StyleWu, J., Liu, C., Peng, C., Xie, B., & Liu, Z. (2025). Impacts of Anthropogenic Disturbances on the Functional Traits of Wetland Plants: A Retrospective Review of Studies Conducted Globally over the Past Two Decades. Ecologies, 6(4), 85. https://doi.org/10.3390/ecologies6040085

