A Review of Dielectric Resonator Antenna at Mm-Wave Band
Abstract
:1. Introduction
2. Dielectric Resonator Antenna
3. mm-Wave Dielectric Resonator Antennas
3.1. Dielectric Resonator Antennas Arrays
3.2. V-Band Dielectric Resonator Antennas
3.3. Multiple-Input and Multiple-Output (MIMO) Dielectric Resonator Antenna
3.4. Circularly Polarized Dielectric Resonator Antenna
3.4.1. CP Dielectric Resonator Antenna at K and Ka Bands
3.4.2. Dielectric Resonator Antenna at V Band
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pethrick, R.A.; Hayward, D.; Jeffrey, K.; Affrossman, S.; Wilford, P. Investigation of the hydration and dehydration of aluminium oxide-hydroxide using high frequency dielectric measurements between 300 kHz-3 GHz. J. Mater. Sci. 1996, 31, 2623–2629. [Google Scholar] [CrossRef]
- Vardakas, J.S.; Monroy, I.T.; Wosinska, L.; Agapiou, G.; Brenot, R.; Pleros, N.; Verikoukis, C. Towards high capacity and low latency backhauling in 5G: The 5G STEP-FWD vision. In Proceedings of the 2017 19th International Conference on Transparent Optical Networks (ICTON), Girona, Spain, 2–6 July 2017; Volume 1, pp. 1–4. [Google Scholar]
- Budka, T.P. Wide-bandwidth millimeter-wave bond-wire interconnects. IEEE Trans. Microw. Theory Tech. 2001, 49, 715–718. [Google Scholar] [CrossRef]
- Lopez, A.V.; Chervyakov, A.; Chance, G.; Verma, S.; Tang, Y. Opportunities and Challenges of mmWave NR. IEEE Wirel. Commun. 2019, 26, 4–6. [Google Scholar] [CrossRef]
- Rappaport, T.S.; Sun, S.; Mayzus, R.; Zhao, H.; Azar, Y.; Wang, K.; Wong, G.N.; Schulz, J.K.; Samimi, M.; Gutierrez, F. Millimeter wave mobile communications for 5G cellular: It will work! IEEE Access 2013, 1, 335–349. [Google Scholar] [CrossRef]
- Parque Científico y Tecnológico de Cantabria (PCTCAN). Available online: https://tst-sistemas.com/ (accessed on 27 January 2023).
- Govindarajulu, S.R.; Alwan, E.A. Range optimization for DSRC and 5G millimeter-wave vehicle-to-vehicle communication link. In Proceedings of the 2019 International Workshop on Antenna Technology (iWAT), Miami, FL, USA, 3–6 March 2019; Volume 1, pp. 228–230. [Google Scholar]
- Medin, M.; Louie, G. The 5G ecosystem: Risks and opportunities for DoD. In Proceedings of the 2019 Defense Innovation Board, Washington, DC, USA, 3 April 2019; p. 33. [Google Scholar]
- Li, E.-L.; Wang, W.-J. 5G will drive the development of health care. Chin. Med. J. 2019, 132, 2895–2896. [Google Scholar] [CrossRef]
- Giannetti, F.; Luise, M.; Reggiannini, R. Mobile and personal communications in the 60 GHz band: A survey. Wirel. Pers. Commun. 1999, 10, 207–243. [Google Scholar] [CrossRef]
- Bani-Bakr, A.; Dimyati, K.; Hindia, M.N.; Wong, W.R.; Imran, M.A. Feasibility study of 28 GHz and 38 GHz millimeter-wave technologies for fog radio access networks using multi-slope path loss model. Phys. Commun. 2021, 47, 101401. [Google Scholar] [CrossRef]
- Zhao, Q.; Li, J. Rain attenuation in millimeter wave ranges. In Proceedings of the 2006 7th International Symposium on Antennas, Propagation & EM Theory, Guilin, China, 26–29 October 2006; Volume 1, pp. 1–4. [Google Scholar]
- Richtmyer, R. Dielectric resonators. J. Appl. Phys. 1939, 10, 391–398. [Google Scholar] [CrossRef]
- Rezaei, P.; Hakkak, M.; Forooraghi, K. Design of wide-band dielectric resonator antenna with a two-segment structure. Prog. Electromagn. Res. 2006, 66, 111–124. [Google Scholar] [CrossRef] [Green Version]
- Cohn, S.B. Microwave bandpass filters containing high-Q dielectric resonators. IEEE Trans. Microw. Theory Tech. 1968, 4, 218–227. [Google Scholar] [CrossRef]
- Fiedziuszko, S. Microwave dielectric resonators. Microw. J. 1986, 29, 189–196. [Google Scholar]
- Okaya, A.; Barash, L. The dielectric microwave resonator. Proc. IRE 1962, 50, 2081–2092. [Google Scholar] [CrossRef]
- Gastine, M.; Courtois, L.; Dormann, J.L. Electromagnetic resonances of free dielectric spheres. IEEE Trans. Microw. Theory Tech. 1967, 15, 694–700. [Google Scholar] [CrossRef]
- Kajfez, D.P.; Guillon, P. Dielectric Resonators; Noble Publishing Corporation: Atlanta, GA, USA, 1998. [Google Scholar]
- Van Bladel, J. On the resonances of a dielectric resonator of very high permittivity. IEEE Trans. Microw. Theory Tech. 1975, 23, 199–208. [Google Scholar] [CrossRef]
- Van Bladel, J. The excitation of dielectric resonators of very high permittivity. IEEE Trans. Microw. Theory Tech. 1975, 23, 208–217. [Google Scholar] [CrossRef]
- Kajfez, D.; Glisson, A.W.; James, J. Computed modal field distributions for isolated dielectric resonators. IEEE Trans. Microw. Theory Tech. 1984, 23, 1609–1984. [Google Scholar] [CrossRef]
- McAllister, M.; Long, S.A. Resonant hemispherical dielectric antenna. Electron. Lett. 1984, 20, 657–659. [Google Scholar] [CrossRef]
- McAllister, M.; Long, S.A.; Conway, G. Rectangular dielectric resonator antenna. Electron. Lett. 1983, 19, 218. [Google Scholar] [CrossRef]
- Petosa, A.; Ittipiboon, A. Dielectric resonator antennas: A historical review and the current state of the art. IEEE Antennas Propag. Mag. 2010, 52, 91–116. [Google Scholar] [CrossRef]
- Liang, X.-L.; Denidni, T.A.; Zhang, L.-N. Wideband L-shaped dielectric resonator antenna with a conformal inverted-trapezoidal patch feed. IEEE Trans. Antennas Propag. 2009, 57, 271–274. [Google Scholar] [CrossRef]
- Bhatnagar, M. Theoretical analysis and optimization of circular patch microstrip antenna. Int. Res. J. Eng. Technol. 2015, 2, 1675–1681. [Google Scholar]
- Lai, Q.; Almpanis, G.; Fumeaux, C.; Benedickter, H.; Vahldieck, R. Comparison of the radiation efficiency for the dielectric resonator antenna and the microstrip antenna at Ka band. IEEE Trans. Antennas Propag. 2008, 56, 3589–3592. [Google Scholar]
- Pan, Y.-M.; Leung, K.W.; Luk, K.-M. Design of the Millimeter-wave Rectangular Dielectric Resonator Antenna Using a Higher-Order Mode. IEEE Trans. Antennas Propag. 2011, 59, 2780–2788. [Google Scholar] [CrossRef]
- Abdulmajid, A.A.; Khamas, S.; Zhang, S. Wideband High-gain millimetre-wave three-layer hemispherical dielectric resonator antenna. Prog. Electromagn. Res. 2020, 103, 225–236. [Google Scholar] [CrossRef]
- Zubir, I.A.; Othman, M.; Ullah, U.; Kamal, S.; Ab Rahman, M.F.; Hussin, R.; Omar, M.F.; Mohammed, A.S.; Ain, M.F.; Ahmad, Z.A.; et al. A low-profile hybrid multi-permittivity dielectric resonator antenna with perforated structure for Ku and K band application. IEEE Access 2020, 8, 151219–151228. [Google Scholar] [CrossRef]
- Baldazzi, E.; Al-Rawi, A.; Cicchetti, R.; Smolders, A.B.; Testa, O.; van Coevorden Moreno, C.D.J.; Caratelli, D. A high-gain dielectric resonator antenna with plastic-based conical horn for millimeter-wave applications. IEEE Antennas Wirel. Propag. Lett. 2020, 19, 949–953. [Google Scholar] [CrossRef]
- Nezhad-Ahmadi, M.R.; Fakharzadeh, M.; Biglarbegian, B.; Safavi-Naeini, S. High-efficiency on-chip dielectric resonator antenna for mm-wave transceivers. IEEE Trans. Antennas Propag. 2010, 10, 3388–3392. [Google Scholar] [CrossRef]
- Gong, K.; Hu, X.H. Low-Profile Substrate Integrated Dielectric Resonator Antenna Implemented With PCB Process. IEEE Antennas Wirel. Propag. Lett. 2014, 13, 1023–1026. [Google Scholar] [CrossRef]
- Mrnka, M.; Cupal, M.; Raida, Z.; Pietrikova, A.; Kocur, D. Millimeter-wave directive dielectric resonator antenna based on LTCC. In Proceedings of the 2016 Loughborough Antennas & Propagation Conference (LAPC), Loughborough, UK, 14–15 November 2016; Volume 1, pp. 1–4. [Google Scholar]
- Ali, M.M.M.; Al-Hasan, M.; Mabrouk, I.B.; Denidni, T.A. Ultra-wideband hybrid magneto-electric dielectric-resonator dipole antenna Fed by a Printed RGW for Millimeter-Wave Applications. IEEE Access 2021, 10, 2028–2036. [Google Scholar] [CrossRef]
- Attia, H.; Abdalrazik, A.; Sharawi, M.S.; Kishk, A.A. Wideband Circularly-Polarized Millimeter-Wave DRA Array for Internet of Things. IEEE Internet Things J. 2023, 1. [Google Scholar] [CrossRef]
- Keyrouz, S.; Diego, C. Dielectric resonator antennas: Basic concepts, design guidelines, and recent developments at millimeter-wave frequencies. Int. J. Antennas Propag. 2023, 2016, 6075680. [Google Scholar] [CrossRef]
- Meher, P.R.; Behera, B.R.; Mishra, S.K. Design and its state-of-the-art of different shaped dielectric resonator antennas at millimeter-wave frequency band. Int. J. Microw. Comput. Eng. 2020, 30, 22221. [Google Scholar] [CrossRef]
- Alanazi, M.D.; Khamas, S.K. Wideband mm-Wave Hemispherical Dielectric Resonator Antenna with Simple Alignment and Assembly Procedures. Electronics 2022, 11, 2917. [Google Scholar] [CrossRef]
- Wahab, W.M.A.; Busuioc, D.; Safavi-Naeini, S. Low cost planar waveguide technology-based dielectric resonator antenna (DRA) for millimeter-wave applications: Analysis, design, and fabrication. IEEE Trans. Antennas Propag. 2010, 58, 2499–2507. [Google Scholar] [CrossRef]
- Abdel-Wahab, W.M.; Wang, Y.; Safavi-Naeini, S. SIW Hybrid Feeding Network-Integrated 2-D DRA Array: Simulations and Experiments. IEEE Antennas Wirel. Propag. Lett. 2016, 15, 548–551. [Google Scholar] [CrossRef]
- Abdel-Wahab, W.M.; Abdallah, M.; Anderson, J.; Wang, Y.; Al-Saedi, H.; Safavi-Naeini, S. SIW-integrated parasitic DRA array: Analysis, design, and measurement. IEEE Antennas Wirel. Propag. Lett. 2018, 18, 69–73. [Google Scholar] [CrossRef]
- Mazhar, W.; Klymyshyn, D.M.; Wells, G.; Qureshi, A.A.; Jacobs, M.; Achenbach, S. Low-profile artificial grid dielectric resonator antenna arrays for mm-wave applications. IEEE Trans. Antennas Propag. 2019, 67, 4406–4417. [Google Scholar] [CrossRef]
- Abdel-Wahab, W.M.; Busuioc, D.; Safavi-Naeini, S. Millimeter-Wave High Radiation Efficiency Planar Waveguide Series-Fed Dielectric Resonator Antenna (DRA) Array: Analysis, Design, and Measurements. IEEE Trans. Antennas Propag. 2011, 59, 2834–2843. [Google Scholar] [CrossRef]
- Niayesh, M.; Kouki, A. LTCC-Integrated Dielectric Resonant Antenna Array for 5G Applications. Sensors 2021, 21, 3801. [Google Scholar] [CrossRef]
- Mrnka, M.; Cupal, M.; Raida, Z.; Pietrikova, A.; Kocur, D. Millimetre-wave dielectric resonator antenna array based on directive LTCC elements. IET Microwaves Antennas Propag. 2018, 12, 2662–2667. [Google Scholar] [CrossRef]
- Luo, W.; Shi, L.; Xu, W.; Chen, W.; Yang, Y.; Ren, Y. High gain dielectric resonance antenna array for millimeter wave vehicular wireless communication. Prog. Electromagn. Res. C 2021, 108, 63–78. [Google Scholar] [CrossRef]
- Liu, Y.T.; Ma, B.; Huang, S.; Wang, S.; Hou, Z.J.; Wu, W. Wideband Low-Profile Connected Rectangular Ring Dielectric Resonator Antenna Array for Millimeter-Wave Applications. IEEE Trans. Antennas Propag. 2022, 71, 999–1004. [Google Scholar] [CrossRef]
- Perron, A.; Denidni, T.A.; Sebak, A.R. High-Gain Hybrid Dielectric Resonator Antenna for Millimeter-Wave Applications: Design and Implementation. IEEE Trans. Antennas Propag. 2009, 57, 2882–2892. [Google Scholar] [CrossRef]
- Sallam, M.O.; Serry, M.; Sedky, S.; Shamim, A.; De Raedt, W.; Vandenbosch, G.A.; Soliman, E.A. Micromachined on-chip dielectric resonator antenna operating at 60 GHz. IEEE Trans. Antennas Propag. 2015, 63, 3410–3416. [Google Scholar] [CrossRef] [Green Version]
- Ohlsson, L.; Bryllert, T.; Gustafson, C.; Sjöberg, D.; Egard, M.; Ärlelid, M.; Wernersson, L.E. Slot-coupled millimeter-wave dielectric resonator antenna for high-efficiency monolithic integration. IEEE Trans. Antennas Propag. 2012, 61, 1599–1607. [Google Scholar] [CrossRef]
- Ardakani, M.D.; Farahani, M.; Akbari, M.; Tatu, S.O. A compact wideband cubic dielectric resonator antenna for integrated 60-GHz MHMIC short-range transceivers. In Proceedings of the 2020 IEEE International Symposium on Antennas and Propagation and North American Radio Science Meetin, Montreal, QC, Canada, 5–10 July 2020. [Google Scholar]
- Chen, Z.; Shen, C.; Liu, H.; Ye, X.; Qi, L.; Yao, Y.; Yu, J.; Chen, X. Millimeter-wave rectangular dielectric resonator antenna array with enlarged DRA dimensions, wideband capability, and high-gain performance. IEEE Trans. Antennas Propag. 2019, 68, 3271–3327. [Google Scholar] [CrossRef]
- Qureshi, A.A.; Klymyshyn, D.M.; Tayfeh, M.; Mazhar, W.; Börner, M.; Mohr, J. Template-based dielectric resonator antenna arrays for millimeter-wave applications. IEEE Trans. Antennas Propag. 2017, 65, 4576–4584. [Google Scholar] [CrossRef]
- Dadgarpour, A.; Zarghooni, B.; Virdee, B.S.; Denidni, T.A.; Kishk, A.A. Mutual coupling reduction in dielectric resonator antennas using metasurface shield for 60-GHz MIMO systems. IEEE Antennas Wirel. Propag. Lett. 2016, 16, 477–4804. [Google Scholar] [CrossRef] [Green Version]
- Farahani, M.; Pourahmadazar, J.; Akbari, M.; Nedil, M.; Sebak, A.R.; Denidni, T.A. Mutual coupling reduction in millimeter-wave MIMO antenna array using a metamaterial polarization-rotator wall. IEEE Antennas Wirel. Propag. Lett. 2017, 16, 2324–2327. [Google Scholar] [CrossRef]
- Karimian, R.; Kesavan, A.; Nedil, M.; Denidni, T.A. Low-mutual-coupling 60-GHz MIMO antenna system with frequency selective surface wall. IEEE Antennas Wirel. Propag. Lett. 2016, 16, 373–376. [Google Scholar] [CrossRef]
- Pan, Y.M.; Qin, X.; Sun, Y.X.; Zheng, S.Y. A simple decoupling method for 5G millimeter-wave MIMO dielectric resonator antennas. IEEE Trans. Antennas Propag. 2019, 67, 2224–2234. [Google Scholar] [CrossRef]
- Zhang, Y.; Deng, J.-Y.; Li, M.-J.; Sun, D.; Guo, L.-X. A MIMO dielectric resonator antenna with improved isolation for 5G mm-wave applications. IEEE Antennas Wirel. Propag. Lett. 2019, 18, 747–751. [Google Scholar] [CrossRef]
- Sharawi, M.S.; Podilchak, S.K.; Hussain, M.T.; Antar, Y.M. Dielectric resonator based MIMO antenna system enabling millimetre-wave mobile devices. IET Microwaves Antennas Propag. 2017, 11, 87–293. [Google Scholar] [CrossRef] [Green Version]
- Sahu, N.K.; Gangwar, R.K. Dual-Port Compact MIMO-DRAs: Exploiting Metallic Sheets to Increase Inter-Port Isolation at 28 GHz 5G-Band. IEEE Trans. Circuits Syst. II Express Briefs 2022, 69, 4814–4818. [Google Scholar] [CrossRef]
- Alanazi, M.D.; Khamas, S.K. A Compact Dual Band MIMO Dielectric Resonator Antenna with Improved Performance for mm-Wave Applications. Sensors 2022, 22, 5056. [Google Scholar] [CrossRef] [PubMed]
- Chu, H.; Guo, Y.-X. A novel approach for millimeter-wave dielectric resonator antenna array designs by using the substrate integrated technology. IEEE Trans. Antennas Propag. 2016, 65, 909–914. [Google Scholar] [CrossRef]
- Abdulmajid, A.A.; Khamas, S.; Zhang, S. Wide bandwidth high gain circularly polarized millimetre-wave rectangular dielectric resonator antenna. Prog. Electromagn. Res. M 2020, 89, 171–177. [Google Scholar] [CrossRef] [Green Version]
- Yang, M.D.; Pan, Y.M.; Sun, Y.X.; Leung, K.W. Wideband circularly polarized substrate-integrated embedded dielectric resonator antenna for millimeter-wave applications. IEEE Trans. Antennas Propag. 2019, 68, 1145–1150. [Google Scholar] [CrossRef]
- Kesavan, A.; Al-Hassan, M.A.; Ben Mabrouk, I.; Denidni, T.A. Wideband circular polarized dielectric resonator antenna array for millimeter-wave applications. Sensors 2021, 21, 3614. [Google Scholar] [CrossRef]
- Bansal, A.; Vaish, A. Deminiaturized mode control rectangular dielectric resonator antenna. Prog. Electromagn. Res. 2016, 86, 173–182. [Google Scholar]
- Gaya, A.; Jamaluddin, M.H.; Alali, B.; Althuwayb, A.A. A novel wide dual band circularly polarized dielectric resonator antenna for milli meter wave 5G applications. Alex. Eng. J. 2022, 61, 10791–10803. [Google Scholar] [CrossRef]
- Zhao, G.; Zhou, Y.; Wang, J.R.; Tong, M.S. A circularly polarized dielectric resonator antenna based on quasi-self-complementary metasurface. IEEE Trans. Antennas Propagationl 2022, 8, 7147–7151. [Google Scholar] [CrossRef]
- Alanazi, M.D.; Khamas, S.K. Wideband Circularly Polarized Millimeter Wave Hemispherical Dielectric Resonator Antenna. Micromachines 2023, 14, 436. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Chen, Z.; Liu, H.; Chang, L.; Huang, T.; Ye, S.; Zhang, L.; Du, C. Single-fed dual-circularly polarized stacked dielectric resonator antenna for K/Ka-band UAV satellite communications. IEEE Trans. Veh. Technol. 2022, 71, 4449–4453. [Google Scholar] [CrossRef]
- Lai, Q.; Fumeaux, C.; Hong, W.; Vahldieck, R. 60 GHz aperture-coupled dielectric resonator antennas fed by a half-mode substrate integrated waveguide. IEEE Trans. Antennas Propag. 2010, 58, 1856–1864. [Google Scholar]
- Sun, Y.X.; Leung, K.W. Circularly polarized substrate-integrated cylindrical dielectric resonator antenna array for 60 GHz applications. IEEE Antennas Wirel. Propag. Lett. 2018, 17, 1401–1405. [Google Scholar] [CrossRef]
Ref. | DRA Shape | Frequency (GHz) | Bandwidth (%) | Gain (dB) | Gain Enhancement Method | Efficiency (%) | Mode |
---|---|---|---|---|---|---|---|
[28] | Cylindrical | 36 | 15.6 | 6.9 | NM | 95 | NM |
[29] | Rectangular | 24 | 5.75 | 6 | Higher-order mode | NM | |
[30] | Hemispherical | 25 | 35.8 | 9.5 | Three-layer DRA | 90 | |
[31] | Cylindrical | 20 | 75.8 | 5.65 | Hybrid Multi-permittivity DRA | 92 | |
[32] | Cylindrical | 30 | 16.6 | 11.3 | Truncated plastic-based conical horn | 94 | |
[33] | Rectangular | 35 | 12 | 1 | Low permittivity DRA | 48 | |
[34] | Rectangular | 35 | 12 | 5.5 | SIDRA | 94 | |
[35] | Cylindrical | 26 | 2.15 | 10.8 | LTCC | 87 | |
[40] | Hemispherical | 28 | 33.3 | 10 | Higher-order modes | 90 |
Ref. | DRA Shape | Frequency (GHz) | Bandwidth (%) | Gain (dB) | Efficiency (%) | Mode | No. of Elements |
---|---|---|---|---|---|---|---|
[41] | Rectangular | 34 | 4.7 | 11.7 | 90 | 4 | |
[42] | Rectangular | 35 | 6.4 | 21.5 | 85 | 64 | |
[43] | Rectangular | 38 | 2.5 | 13 | 91 | 12 | |
[44] | Grid | 32 | 18.4 | 12 | 76 | 8 | |
[46] | Cylindrical | 28 | 9.8 | 15.6 | 88 | 16 | |
[47] | Cylindrical | 24 | 1 | 16.3 | 87 | 4 | |
[48] | Rectangular | 26 | 2.18 | 20.5 | 92 | 64 | |
[49] | Rectangular | 28 | 31.6 | 8 | 86 | 4 |
Ref. | DRA Shape | Frequency (GHz) | Bandwidth (%) | Gain (dB) | Efficiency (%) | Mode |
---|---|---|---|---|---|---|
[50] | Cylindrical | 60 | 15 | 11.9 | 75 | |
[51] | Cylindrical | 60 | 3.78 | 7 | 79 | |
[52] | Rectangular | 60 | 6.1 | 6 | 98 | |
[53] | Rectangular | 60 | 16 | 6.5 | 90 | NM |
[54] | Rectangular | 67 | 16.4 | 17.2 | 72 | |
[55] | Rectangular | 60 | 12 | 12 | NM | NM |
Ref. | DRA Shape | Frequency (GHz) | Bandwidth (%) | Gain (dB) | Efficiency (%) | Mode | Isolation Method |
---|---|---|---|---|---|---|---|
[56] | Cylindrical | 60 | 13 | 7.9 | 91 | NM | Metasurface |
[57] | Cylindrical | 60 | 13.3 | NM | 88 | Metamaterial Polarization | |
[58] | Rectangular | 60 | 11.5 | NM | 90 | NM | FSS |
[59] | Rectangular | 26 | 7.3 | 6.4 | NM | Metallic vias | |
[60] | Rectangular | 28 | 4.8 | 9.9 | NM | Metal strip | |
[61] | Rectangular | 30 | 3.33 | 7 | 80 | Feeding network | |
[62] | Rectangular | 28 | 3.9 | 6 | NM | Metallic sheets | |
[63] | Rectangular | 28/38 | 18/13 | 6.2/7.5 | 95 | / | Locating elements |
Ref. | DRA Shape | Frequency (GHz) | Bandwidth (%) | Gain (dB) | Efficiency (%) | Mode | Axial Ratio (%) |
---|---|---|---|---|---|---|---|
[64] | Rectangular | 30 | 16.48 | 12.7 | NM | 1.1 | |
[65] | Rectangular | 26 | 36.5 | 12.5 | 90 | 13.75 | |
[66] | Cylindrical | 25 | 34.6 | 8.15 | NM | 26.3 | |
[67] | Flower | 30 | 33.8 | 9.5 | NM | NM | 5 |
[68] | Rectangular | 24 | 15.06 | 7.9 | NM | 5.8 | |
[69] | Trapezoidal | 26 | 26.3 | 3.28 | NM | 5.23 | |
[70] | Cylindrical | 26 | 26 | 6.6 | NM | 1.35 | |
[71] | Hemispherical | 26 | 18 | 7.5 | 95 | 18 | |
[72] | Rectangular | 30/30 | 6.4/12.8 | 6.6/8.2 | NM | 5.2/4.1 | |
[73] | Cylindrical | 60 | 24.2 | 5.5 | 92 | 4 | |
[74] | Cylindrical | 60 | 11.8 | 11.43 | 84 | 15.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alanazi, M.D. A Review of Dielectric Resonator Antenna at Mm-Wave Band. Eng 2023, 4, 843-856. https://doi.org/10.3390/eng4010051
Alanazi MD. A Review of Dielectric Resonator Antenna at Mm-Wave Band. Eng. 2023; 4(1):843-856. https://doi.org/10.3390/eng4010051
Chicago/Turabian StyleAlanazi, Meshari D. 2023. "A Review of Dielectric Resonator Antenna at Mm-Wave Band" Eng 4, no. 1: 843-856. https://doi.org/10.3390/eng4010051
APA StyleAlanazi, M. D. (2023). A Review of Dielectric Resonator Antenna at Mm-Wave Band. Eng, 4(1), 843-856. https://doi.org/10.3390/eng4010051