Regeneration or Repurposing of Spent Pollutant Adsorbents in Energy-Related Applications: A Sustainable Choice?
Abstract
1. Introduction
2. Pollutant Adsorbents: Advanced Precursors in Disguise
2.1. Porous Structure, Chemical Composition, and Adsorption Interactions
2.2. Adsorbents in Water Treatment and Remediation
3. Environmental Challenges of Spent Adsorbents
3.1. Regeneration
3.1.1. Chemical and Electrochemical Methods
3.1.2. Biological and Other Regeneration Methods
3.1.3. Regeneration of PFAS Adsorbent
3.1.4. Thermal Degradation
3.2. Repurposing in Energy-Related Applications
3.2.1. Adsorbents to Materials in Supercapacitors
3.2.2. Adsorbents to Materials for Fuel Cells
3.2.3. Adsorbents to Materials in Batteries
4. Perspectives
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jaiswal, K.K.; Chowdhury, C.R.; Yadav, D.; Verma, R.; Dutta, S.; Jaiswal, K.S.; Sangmesh, B.; Karuppasamy, K.S.K. Renewable and Sustainable Clean Energy Development and Impact on Social, Economic, and Environmental Health. Energy Nexus 2022, 7, 100118. [Google Scholar] [CrossRef]
- Farasati Far, B.; Rabiee, N.; Iravani, S. Environmental Implications of Metal–Organic Frameworks and MXenes in Biomedical Applications: A Perspective. RSC Adv. 2023, 13, 34562–34575. [Google Scholar] [CrossRef]
- Milojević-Rakić, M.; Gavrilov, N.; Janošević Ležaić, A.; Uskoković-Marković, S.; Nedić Vasiljević, B.; Bajuk-Bogdanović, D. Complementary: Green Catalysis over Red Soil for Pollutant Removal. Appl. Clay Sci. 2024, 262, 107601. [Google Scholar] [CrossRef]
- Oyewo, O.A.; Muliwa, A.M.; Makgato, S.S.; Onwudiwe, D.C. Research Progress on Green Adsorption Process for Water Pollution Control Applications. Hybrid Adv. 2025, 8, 100338. [Google Scholar] [CrossRef]
- Milojević-Rakić, M.; Bajuk-Bogdanović, D. (Eds.) Zeolites and Porous Materials: Insight into Catalysis and Adsorption Processes; MDPI: Basel, Switzerland, 2023; ISBN 978-3-0365-8155-2. [Google Scholar]
- Busetty, S. Environmental Treatment Technologies: Adsorption. In Handbook of Environmental Materials Management; Springer International Publishing: Cham, Switzerland, 2019; pp. 1367–1397. [Google Scholar]
- Fouda-Mbanga, B.G.; Onotu, O.; Tywabi-Ngeva, Z. Advantages of the Reuse of Spent Adsorbents and Potential Applications in Environmental Remediation: A Review. Green Anal. Chem. 2024, 11, 100156. [Google Scholar] [CrossRef]
- Wang, Z.; Qin, X.; Dong, H.; Liang, Y.; Huo, Z.; Qian, K.; Yang, F. Applications of Ionic Liquids in the Field of Agriculture: A Review. Agriculture 2023, 13, 2279. [Google Scholar] [CrossRef]
- Roy, S.; Ahmaruzzaman, M. Ionic Liquid Based Composites: A Versatile Materials for Remediation of Aqueous Environmental Contaminants. J. Environ. Manag. 2022, 315, 115089. [Google Scholar] [CrossRef]
- Popadić, D.; Krstić, J.; Janošević Ležaić, A.; Popović, M.; Milojević-Rakić, M.; Ignjatović, L.; Bajuk-Bogdanović, D.; Gavrilov, N. Acetamiprid’s Degradation Products and Mechanism: Part II—Inert Atmosphere and Charge Storage. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2024, 308, 123772. [Google Scholar] [CrossRef]
- Han, B.; Butterly, C.; Zhang, W.; He, J.; Chen, D. Adsorbent Materials for Ammonium and Ammonia Removal: A Review. J. Clean. Prod. 2021, 283, 124611. [Google Scholar] [CrossRef]
- Pellenz, L.; de Oliveira, C.R.S.; da Silva, A.H., Jr.; da Silva, L.J.S.; da Silva, L.; de Souza, A.A.U.; Ulson, S.M.D.A.G.; Borba, F.H.; da Silva, A. A Comprehensive Guide for Characterization of Adsorbent Materials. Sep. Purif. Technol. 2023, 305, 122435. [Google Scholar] [CrossRef]
- Pellenz, L.; da Silva, L.J.S.; Mazur, L.P.; Figueiredo, G.M.; de Borba, F.H.; Ulson de Souza, A.A.; Guelli Ulson de Souza, S.M.A.; da Silva, A. Functionalization of Graphene with Nitrogen-Based Groups for Water Purification via Adsorption: A Review. J. Water Process Eng. 2022, 48, 102873. [Google Scholar] [CrossRef]
- Saleh, T.A. Nanomaterials: Classification, Properties, and Environmental Toxicities. Environ. Technol. Innov. 2020, 20, 101067. [Google Scholar] [CrossRef]
- Abegunde, S.M.; Idowu, K.S.; Adejuwon, O.M.; Adeyemi-Adejolu, T. A Review on the Influence of Chemical Modification on the Performance of Adsorbents. Resour. Environ. Sustain. 2020, 1, 100001. [Google Scholar] [CrossRef]
- Pelekani, C.; Snoeyink, V.L. Competitive Adsorption in Natural Water: Role of Activated Carbon Pore Size. Water Res. 1999, 33, 1209–1219. [Google Scholar] [CrossRef]
- Hammer, M.U.; Anderson, T.H.; Chaimovich, A.; Shell, M.S.; Israelachvili, J. The Search for the Hydrophobic Force Law. Faraday Discuss. 2010, 146, 299. [Google Scholar] [CrossRef] [PubMed]
- Alsawy, T.; Rashad, E.; El-Qelish, M.; Mohammed, R.H. A Comprehensive Review on the Chemical Regeneration of Biochar Adsorbent for Sustainable Wastewater Treatment. NPJ Clean Water 2022, 5, 29. [Google Scholar] [CrossRef]
- Pérez-Botella, E.; Valencia, S.; Rey, F. Zeolites in Adsorption Processes: State of the Art and Future Prospects. Chem. Rev. 2022, 122, 17647–17695. [Google Scholar] [CrossRef]
- Sannino, F.; Ruocco, S.; Marocco, A.; Esposito, S.; Pansini, M. Cyclic Process of Simazine Removal from Waters by Adsorption on Zeolite H-Y and Its Regeneration by Thermal Treatment. J. Hazard. Mater. 2012, 229–230, 354–360. [Google Scholar] [CrossRef]
- Milojević-Rakić, M.; Popadić, D.; Janošević Ležaić, A.; Jevremović, A.; Nedić Vasiljević, B.; Uskoković-Marković, S.; Bajuk-Bogdanović, D. MFI, BEA and FAU Zeolite Scavenging Role in Neonicotinoids and Radical Species Elimination. Environ. Sci. Process Impacts 2022, 24, 265–276. [Google Scholar] [CrossRef]
- Andrunik, M.; Skalny, M.; Gajewska, M.; Marzec, M.; Bajda, T. Comparison of Pesticide Adsorption Efficiencies of Zeolites and Zeolite-Carbon Composites and Their Regeneration Possibilities. Heliyon 2023, 9, e20572. [Google Scholar] [CrossRef]
- Uddin, M.K. A Review on the Adsorption of Heavy Metals by Clay Minerals, with Special Focus on the Past Decade. Chem. Eng. J. 2017, 308, 438–462. [Google Scholar] [CrossRef]
- Wang, Y.; Cheng, L.; Liu, X.; Ding, J.; Zhang, N.; Li, Z.; Zhao, M.; Meng, F.; Meng, Z. Removal of Pesticides by Layered Double Hydroxide Modified Different Clay Minerals and Site Energy Analysis. Chem. Eng. Sci. 2024, 287, 119803. [Google Scholar] [CrossRef]
- Gomez-Maldonado, D.; Erramuspe, I.B.V.; Peresin, M.S. Natural Polymers as Alternative Adsorbents and Treatment Agents for Water Remediation. Bioresources 2019, 14, 10093–10160. [Google Scholar] [CrossRef]
- Ahmad, F.A. The Use of Agro-Waste-Based Adsorbents as Sustainable, Renewable, and Low-Cost Alternatives for the Removal of Ibuprofen and Carbamazepine from Water. Heliyon 2023, 9, e16449. [Google Scholar] [CrossRef] [PubMed]
- Hama Aziz, K.H.; Kareem, R. Recent Advances in Water Remediation from Toxic Heavy Metals Using Biochar as a Green and Efficient Adsorbent: A Review. Case Stud. Chem. Environ. Eng. 2023, 8, 100495. [Google Scholar] [CrossRef]
- Mohtasim, M.S.; Das, B.K. Advancement of Biocarbon Materials in Sustainable Thermal and Electrochemical Energy Storage with Future Outlooks. Renew. Sustain. Energy Rev. 2025, 218, 115779. [Google Scholar] [CrossRef]
- Tan, X.; Liu, S.; Liu, Y.; Gu, Y.; Zeng, G.; Hu, X.; Wang, X.; Liu, S.; Jiang, L. Biochar as Potential Sustainable Precursors for Activated Carbon Production: Multiple Applications in Environmental Protection and Energy Storage. Bioresour. Technol. 2017, 227, 359–372. [Google Scholar] [CrossRef]
- Dong, X.; Chu, Y.; Tong, Z.; Sun, M.; Meng, D.; Yi, X.; Gao, T.; Wang, M.; Duan, J. Mechanisms of Adsorption and Functionalization of Biochar for Pesticides: A Review. Ecotoxicol. Environ. Saf. 2024, 272, 116019. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, Z.; Wang, J.; Zhao, X.; Zhao, Y.; Qian, J.; Wang, T. Pyrolysis and Hydrothermal Carbonization of Biowaste: A Comparative Review on the Conversion Pathways and Potential Applications of Char Product. Sustain. Chem. Pharm. 2023, 33, 101106. [Google Scholar] [CrossRef]
- Stojanović, J.; Milojević-Rakić, M.; Bajuk-Bogdanović, D.; Ranđelović, D.; Otašević, B.; Malenović, A.; Janošević Ležaić, A.; Protić, A. Carbonization of Invasive Plant Species—Novel Route for Removal of Active Pharmaceutical Ingredients via Adsorption. Processes 2024, 12, 2149. [Google Scholar] [CrossRef]
- Pathy, A.; Pokharel, P.; Chen, X.; Balasubramanian, P.; Chang, S.X. Activation Methods Increase Biochar’s Potential for Heavy-Metal Adsorption and Environmental Remediation: A Global Meta-Analysis. Sci. Total Environ. 2023, 865, 161252. [Google Scholar] [CrossRef]
- Heidarinejad, Z.; Dehghani, M.H.; Heidari, M.; Javedan, G.; Ali, I.; Sillanpää, M. Methods for Preparation and Activation of Activated Carbon: A Review. Environ. Chem. Lett. 2020, 18, 393–415. [Google Scholar] [CrossRef]
- Larasati, A.; Fowler, G.D.; Graham, N.J.D. Insights into Chemical Regeneration of Activated Carbon for Water Treatment. J. Environ. Chem. Eng. 2021, 9, 105555. [Google Scholar] [CrossRef]
- Zieliński, B.; Miądlicki, P.; Przepiórski, J. Development of Activated Carbon for Removal of Pesticides from Water: Case Study. Sci. Rep. 2022, 12, 20869. [Google Scholar] [CrossRef] [PubMed]
- Tahmasebi, A.A.; Salimi Beni, A.; Azhdarpoor, A.; Moeini, Z. The Application of Granular and Biological Activated Carbon Columns in Removal of Organochlorine and Organophosphorus Pesticides in a Water Treatment Plant. J. Water Process Eng. 2023, 56, 104383. [Google Scholar] [CrossRef]
- Jin, P.; Jin, X.; Wang, X.; Feng, Y.; Wang, X.C. Biological Activated Carbon Treatment Process for Advanced Water and Wastewater Treatment. In Biomass Now—Cultivation and Utilization; InTech: London, UK, 2013. [Google Scholar]
- Naghdi, S.; Shahrestani, M.M.; Zendehbad, M.; Djahaniani, H.; Kazemian, H.; Eder, D. Recent Advances in Application of Metal-Organic Frameworks (MOFs) as Adsorbent and Catalyst in Removal of Persistent Organic Pollutants (POPs). J. Hazard. Mater. 2023, 442, 130127. [Google Scholar] [CrossRef] [PubMed]
- Ihsanullah, I. Applications of MOFs as Adsorbents in Water Purification: Progress, Challenges and Outlook. Curr. Opin. Environ. Sci. Health 2022, 26, 100335. [Google Scholar] [CrossRef]
- Sağlam, S.; Türk, F.N.; Arslanoğlu, H. Use and Applications of Metal-Organic Frameworks (MOF) in Dye Adsorption: Review. J. Environ. Chem. Eng. 2023, 11, 110568. [Google Scholar] [CrossRef]
- Lu, H.; Yang, Q.; Huang, B.; Qi, J.; Wang, R.; Zhou, Q.; Chen, Q.; Zhu, L.; Jin, J.; Kong, Y. Removal Performance and Adsorption Kinetics of Dyes by a Co-Based Metal Organic Framework. Microporous Mesoporous Mater. 2023, 360, 112665. [Google Scholar] [CrossRef]
- Mubarak, A.S.; Salih, S.S.; Kadhom, M.; Ghosh, T.K. Removal of Heavy Metals from Contaminated Water Using Metal-Organic Frameworks (MOFs): A Review on Techniques and Applications. Mater. Sci. Eng. B 2025, 315, 118105. [Google Scholar] [CrossRef]
- Li, J.; Lv, Q.; Bi, L.; Fang, F.; Hou, J.; Di, G.; Wei, J.; Wu, X.; Li, X. Metal-Organic Frameworks as Superior Adsorbents for Pesticide Removal from Water: The Cutting-Edge in Characterization, Tailoring, and Application Potentials. Coord. Chem. Rev. 2023, 493, 215303. [Google Scholar] [CrossRef]
- Rahmani, A.; Shabanloo, A.; Zabihollahi, S.; Salari, M.; Leili, M.; Khazaei, M.; Alizadeh, S.; Nematollahi, D. Facile Fabrication of Amino-Functionalized MIL-68(Al) Metal–Organic Framework for Effective Adsorption of Arsenate (As(V)). Sci. Rep. 2022, 12, 11865. [Google Scholar] [CrossRef] [PubMed]
- Ding, R.-D.; Li, D.-D.; Leng, F.; Yu, J.-H.; Jia, M.-J.; Xu, J.-Q. A Metal–Organic Framework with Rich Accessible Nitrogen Sites for Rapid Dye Adsorption and Highly Efficient Dehydrogenation of Formic Acid. Dalton Trans. 2022, 51, 8695–8704. [Google Scholar] [CrossRef] [PubMed]
- Jevremović, A.; Savić, M.; Janošević Ležaić, A.; Krstić, J.; Gavrilov, N.; Bajuk-Bogdanović, D.; Milojević-Rakić, M.; Ćirić-Marjanović, G. Environmental Potential of Carbonized MOF-5/PANI Composites for Pesticide, Dye, and Metal Cations—Can They Actually Retain Them All? Polymers 2023, 15, 4349. [Google Scholar] [CrossRef]
- Faheem, M.; Azher Hassan, M.; Du, J.; Wang, B. Harnessing Potential of Smart and Conventional Spent Adsorbents: Global Practices and Sustainable Approaches through Regeneration and Tailored Recycling. Sep. Purif. Technol. 2025, 354, 128907. [Google Scholar] [CrossRef]
- Yadav, S.; Sharma, N.; Dalal, A.; Panghal, P.; Sharma, A.K.; Kumar, S. Cutting-Edge Regeneration Technologies for Saturated Adsorbents: A Systematic Review on Pathways to Circular Wastewater Treatment System. Environ. Monit. Assess. 2025, 197, 215. [Google Scholar] [CrossRef]
- Bayuo, J.; Rwiza, M.J.; Choi, J.W.; Mtei, K.M.; Hosseini-Bandegharaei, A.; Sillanpää, M. Adsorption and Desorption Processes of Toxic Heavy Metals, Regeneration and Reusability of Spent Adsorbents: Economic and Environmental Sustainability Approach. Adv. Colloid. Interface Sci. 2024, 329, 103196. [Google Scholar] [CrossRef]
- Li, Q.; Qi, Y.; Gao, C. Chemical Regeneration of Spent Powdered Activated Carbon Used in Decolorization of Sodium Salicylate for the Pharmaceutical Industry. J. Clean. Prod. 2015, 86, 424–431. [Google Scholar] [CrossRef]
- Ghani, A.A.; Shahzad, A.; Moztahida, M.; Tahir, K.; Jeon, H.; Kim, B.; Lee, D.S. Adsorption and Electrochemical Regeneration of Intercalated Ti3C2Tx MXene for the Removal of Ciprofloxacin from Wastewater. Chem. Eng. J. 2021, 421, 127780. [Google Scholar] [CrossRef]
- Mashkoor, F.; Nasar, A.; Inamuddin; Asiri, A.M. Exploring the Reusability of Synthetically Contaminated Wastewater Containing Crystal Violet Dye Using Tectona Grandis Sawdust as a Very Low-Cost Adsorbent. Sci. Rep. 2018, 8, 8314. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, D.; Liu, S.; Wang, C. Enhanced Removal of Chromium(III) for Aqueous Solution by EDTA Modified Attapulgite: Adsorption Performance and Mechanism. Sci. Total Environ. 2020, 720, 137391. [Google Scholar] [CrossRef] [PubMed]
- Lu, P.-J.; Lin, H.-C.; Yu, W.-T.; Chern, J.-M. Chemical Regeneration of Activated Carbon Used for Dye Adsorption. J. Taiwan Inst. Chem. Eng. 2011, 42, 305–311. [Google Scholar] [CrossRef]
- Cooney, D.O.; Nagerl, A.; Hines, A.L. Solvent Regeneration of Activated Carbon. Water Res. 1983, 17, 403–410. [Google Scholar] [CrossRef]
- Hasanzadeh, M.; Soltaninejad, Y.; Esmaeili, S.; Babaei, A.A. Preparation, Characterization, and Application of Modified Magnetic Biochar for the Removal of Benzotriazole: Process Optimization, Isotherm and Kinetic Studies, and Adsorbent Regeneration. Water Sci. Technol. 2022, 85, 3036–3054. [Google Scholar] [CrossRef]
- Hamad, K.I.; Humadi, J.I.; Abdulkareem, H.A.; Al-Salihi, S.; Farhan, O.I. Efficient Immobilization of Acids into Activated Carbon for High Durability and Continuous Desulfurization of Diesel Fuel. Energy Sci. Eng. 2023, 11, 3662–3679. [Google Scholar] [CrossRef]
- Chiu, C.-A.; Hristovski, K.; Huling, S.; Westerhoff, P. In-Situ Regeneration of Saturated Granular Activated Carbon by an Iron Oxide Nanocatalyst. Water Res. 2013, 47, 1596–1603. [Google Scholar] [CrossRef]
- Toledo, L.C.; Silva, A.C.B.; Augusti, R.; Lago, R.M. Application of Fenton’s Reagent to Regenerate Activated Carbon Saturated with Organochloro Compounds. Chemosphere 2003, 50, 1049–1054. [Google Scholar] [CrossRef]
- Sánchez-Yepes, A.; Santos, A.; Rosas, J.M.; Rodríguez-Mirasol, J.; Cordero, T.; Lorenzo, D. Sustainable Reuse of Toxic Spent Granular Activated Carbon by Heterogeneous Fenton Reaction Intensified by Temperature Changes. Chemosphere 2023, 341, 140047. [Google Scholar] [CrossRef]
- Chen, Q.; Liu, H.; Yang, Z.; Tan, D. Regeneration Performance of Spent Granular Activated Carbon for Tertiary Treatment of Dyeing Wastewater by Fenton Reagent and Hydrogen Peroxide. J. Mater. Cycles Waste Manag. 2017, 19, 256–264. [Google Scholar] [CrossRef]
- Zhou, Y.; Lu, J.; Zhou, Y.; Liu, Y. Recent Advances for Dyes Removal Using Novel Adsorbents: A Review. Environ. Pollut. 2019, 252, 352–365. [Google Scholar] [CrossRef]
- Nath, K.; Bhakhar, M.S. Microbial Regeneration of Spent Activated Carbon Dispersed with Organic Contaminants: Mechanism, Efficiency, and Kinetic Models. Environ. Sci. Pollut. Res. 2011, 18, 534–546. [Google Scholar] [CrossRef]
- Gong, X.; Tian, W.; Wang, L.; Bai, J.; Qiao, K.; Zhao, J. Biological Regeneration of Brewery Spent Diatomite and Its Reuse in Basic Dye and Chromium (III) Ions Removal. Process Saf. Environ. Prot. 2019, 128, 353–361. [Google Scholar] [CrossRef]
- Noor, R.; Septiyani, E.; Zevi, Y.; Arifianingsih, N.N. Bioregeneration of Saturated Natural Mordenite to Reduce Iron and Manganese in Groundwater. E3S Web Conf. 2020, 148, 02003. [Google Scholar] [CrossRef]
- Khataee, A.; Kayan, B.; Kalderis, D.; Karimi, A.; Akay, S.; Konsolakis, M. Ultrasound-Assisted Removal of Acid Red 17 Using Nanosized Fe3O4-Loaded Coffee Waste Hydrochar. Ultrason. Sonochem. 2017, 35, 72–80. [Google Scholar] [CrossRef] [PubMed]
- Liang, X.; Yang, C.; Su, X.; Xue, X. Regeneration of Spent Bleaching Clay by Ultrasonic Irradiation and Its Application in Methylene Blue Adsorption. Clay Min. 2020, 55, 24–30. [Google Scholar] [CrossRef]
- Lim, J.-L.; Okada, M. Regeneration of Granular Activated Carbon Using Ultrasound. Ultrason. Sonochem. 2005, 12, 277–282. [Google Scholar] [CrossRef]
- Wang, J.; Li, W.; Zhao, Z.; Musoke, F.S.N.; Wu, X. Ultrasonic Activated Biochar and Its Removal of Harmful Substances in Environment. Microorganisms 2022, 10, 1593. [Google Scholar] [CrossRef]
- Shi, K.; Xu, Z.; Wang, Y.; Fu, W.; Chen, B. Study on Regeneration Characteristics of Granular Activated Carbon Using Ultrasonic and Thermal Methods. Environ. Sci. Pollut. Res. 2024, 31, 26580–26591. [Google Scholar] [CrossRef]
- Zhang, T.; Yang, Y.; Li, X.; Zhou, Z.; Wei, B. Ultrasonic–Thermal Regeneration of Spent Powdered Activated Carbon. Sustainability 2023, 15, 9060. [Google Scholar] [CrossRef]
- Sun, Y.; Zheng, T.; Zhang, G.; Zheng, Y.; Wang, P. Effect and Mechanism of Microwave-Activated Ultraviolet-Advanced Oxidation Technology for Adsorbent Regeneration. Environ. Sci. Pollut. Res. 2018, 25, 290–298. [Google Scholar] [CrossRef]
- Soker, O.; Hao, S.; Trewyn, B.G.; Higgins, C.P.; Strathmann, T.J. Application of Hydrothermal Alkaline Treatment to Spent Granular Activated Carbon: Destruction of Adsorbed PFASs and Adsorbent Regeneration. Environ. Sci. Technol. Lett. 2023, 10, 425–430. [Google Scholar] [CrossRef]
- Gagliano, E.; Falciglia, P.P.; Zaker, Y.; Karanfil, T.; Roccaro, P. Microwave Regeneration of Granular Activated Carbon Saturated with PFAS. Water Res. 2021, 198, 117121. [Google Scholar] [CrossRef]
- Didenko, T.; Lau, A.; Purohit, A.L.; Feng, J.; Pinkard, B.; Ateia, M.; Novosselov, I.V. Regeneration of PFAS-Laden Granular Activated Carbon by Modified Supercritical CO2 Extraction. Chemosphere 2025, 370, 143986. [Google Scholar] [CrossRef]
- Smith, S.J.; Lauria, M.; Ahrens, L.; McCleaf, P.; Hollman, P.; Bjälkefur Seroka, S.; Hamers, T.; Arp, H.P.H.; Wiberg, K. Electrochemical Oxidation for Treatment of PFAS in Contaminated Water and Fractionated Foam—A Pilot-Scale Study. ACS EST Water 2023, 3, 1201–1211. [Google Scholar] [CrossRef] [PubMed]
- Zeidabadi, F.A.; Esfahani, E.B.; McBeath, S.T.; Mohseni, M. Managing PFAS Exhausted Ion-Exchange Resins Through Effective Regeneration/Electrochemical Process. Water Res. 2024, 255, 121529. [Google Scholar] [CrossRef] [PubMed]
- Sonmez Baghirzade, B.; Zhang, Y.; Reuther, J.F.; Saleh, N.B.; Venkatesan, A.K.; Apul, O.G. Thermal Regeneration of Spent Granular Activated Carbon Presents an Opportunity to Break the Forever PFAS Cycle. Environ. Sci. Technol. 2021, 55, 5608–5619. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, R.; Sajjadi, B.; Chen, W.-Y.; Mattern, D.L.; Hammer, N.; Raman, V.; Dorris, A. Effect of Pyrolysis Temperature on PhysicoChemical Properties and Acoustic-Based Amination of Biochar for Efficient CO2 Adsorption. Front. Energy Res. 2020, 8, 85. [Google Scholar] [CrossRef]
- Picheau, E.; Amar, S.; Derré, A.; Pénicaud, A.; Hof, F. An Introduction to the Combustion of Carbon Materials. Chem. A Eur. J. 2022, 28, e202200117. [Google Scholar] [CrossRef]
- Xiao, F.; Sasi, P.C.; Yao, B.; Kubátová, A.; Golovko, S.A.; Golovko, M.Y.; Soli, D. Thermal Stability and Decomposition of Perfluoroalkyl Substances on Spent Granular Activated Carbon. Environ. Sci. Technol. Lett. 2020, 7, 343–350. [Google Scholar] [CrossRef]
- Velempini, T.; Ahamed, M.E.H.; Pillay, K. Heavy-Metal Spent Adsorbents Reuse in Catalytic, Energy and Forensic Applications- a New Approach in Reducing Secondary Pollution Associated with Adsorption. Results Chem. 2023, 5, 100901. [Google Scholar] [CrossRef]
- Guo, H.; Inoue, Y.; Isoda, Y.; Honma, T.; Smith, R.L. Upcycling of Spent Functional Biocarbon Adsorbents to Catalysts for the Conversion of C5/C6 Carbohydrates into Platform Chemicals. RSC Sustain. 2023, 1, 554–562. [Google Scholar] [CrossRef]
- He, D.; Zhang, L.; Zhao, Y.; Mei, Y.; Chen, D.; He, S.; Luo, Y. Recycling Spent Cr Adsorbents as Catalyst for Eliminating Methylmercaptan. Environ. Sci. Technol. 2018, 52, 3669–3675. [Google Scholar] [CrossRef]
- Nighojkar, A.; Sangal, V.K.; Dixit, F.; Kandasubramanian, B. Sustainable Conversion of Saturated Adsorbents (SAs) from Wastewater into Value-Added Products: Future Prospects and Challenges with Toxic per- and Poly-Fluoroalkyl Substances (PFAS). Environ. Sci. Pollut. Res. 2022, 29, 78207–78227. [Google Scholar] [CrossRef]
- El-Naggar, A.; Lee, S.S.; Rinklebe, J.; Farooq, M.; Song, H.; Sarmah, A.K.; Zimmerman, A.R.; Ahmad, M.; Shaheen, S.M.; Ok, Y.S. Biochar Application to Low Fertility Soils: A Review of Current Status, and Future Prospects. Geoderma 2019, 337, 536–554. [Google Scholar] [CrossRef]
- Yu, H.; Zou, W.; Chen, J.; Chen, H.; Yu, Z.; Huang, J.; Tang, H.; Wei, X.; Gao, B. Biochar Amendment Improves Crop Production in Problem Soils: A Review. J. Environ. Manag. 2019, 232, 8–21. [Google Scholar] [CrossRef] [PubMed]
- Alkharabsheh, H.M.; Seleiman, M.F.; Battaglia, M.L.; Shami, A.; Jalal, R.S.; Alhammad, B.A.; Almutairi, K.F.; Al-Saif, A.M. Biochar and Its Broad Impacts in Soil Quality and Fertility, Nutrient Leaching and Crop Productivity: A Review. Agronomy 2021, 11, 993. [Google Scholar] [CrossRef]
- Arun, J.; Gopinath, K.P.; Vigneshwar, S.S.; Swetha, A. Sustainable and Eco-Friendly Approach for Phosphorus Recovery from Wastewater by Hydrothermally Carbonized Microalgae: Study on Spent Bio-Char as Fertilizer. J. Water Process Eng. 2020, 38, 101567. [Google Scholar] [CrossRef]
- Baskar, A.V.; Bolan, N.; Hoang, S.A.; Sooriyakumar, P.; Kumar, M.; Singh, L.; Jasemizad, T.; Padhye, L.P.; Singh, G.; Vinu, A.; et al. Recovery, Regeneration and Sustainable Management of Spent Adsorbents from Wastewater Treatment Streams: A Review. Sci. Total Environ. 2022, 822, 153555. [Google Scholar] [CrossRef]
- Wu, L.; Li, Y.; Fu, Z.; Su, B.-L. Hierarchically Structured Porous Materials: Synthesis Strategies and Applications in Energy Storage. Natl. Sci. Rev. 2020, 7, 1667–1701. [Google Scholar] [CrossRef]
- Tricase, A.; Muhyuddin, M.; Erable, B.; Atanassov, P.; Pant, D.; Santoro, C.; Bollella, P. Bio- and Electrocatalysts for Oxygen Reduction Reaction in Neutral Media: From Mechanisms to Practical Applications. J. Power Sources 2025, 646, 237267. [Google Scholar] [CrossRef]
- Chi, W.; Wang, G.; Qiu, Z.; Li, Q.; Xu, Z.; Li, Z.; Qi, B.; Cao, K.; Chi, C.; Wei, T.; et al. Secondary High-Temperature Treatment of Porous Carbons for High-Performance Supercapacitors. Batteries 2023, 10, 5. [Google Scholar] [CrossRef]
- Aoulad El Hadj Ali, Y.; Ahrouch, M.; Ait Lahcen, A.; Demba N’diaye, A.; El Yousfi, F.; Stitou, M. Dried Sewage Sludge as an Efficient Adsorbent for Pollutants: Cationic Methylene Blue Removal Case Study. Nanotechnol. Environ. Eng. 2021, 6, 17. [Google Scholar] [CrossRef]
- Dong, S.; Li, Z.; Yi, Z.; Li, H.; Tian, Y.; Liu, S. Recycling of Activated Carbons from Spent Supercapacitors to Refabricate Improved Supercapacitors. J. Energy Storage 2024, 102, 114182. [Google Scholar] [CrossRef]
- Popadić, D.; Gavrilov, N.; Krstić, J.; Nedić Vasiljević, B.; Janošević Ležaić, A.; Uskoković-Marković, S.; Milojević-Rakić, M.; Bajuk-Bogdanović, D. Spectral Evidence of Acetamiprid’s Thermal Degradation Products and Mechanism. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2023, 301, 122987. [Google Scholar] [CrossRef]
- Li, D.; Ma, J.; Xu, H.; Xu, X.; Qiu, H.; Cao, X.; Zhao, L. Recycling Waste Nickel-Laden Biochar to Pseudo-Capacitive Material by Hydrothermal Treatment: Roles of Nickel-Carbon Interaction. Carbon Res. 2022, 1, 16. [Google Scholar] [CrossRef]
- Tan, Z.; Yu, F.; Liu, L.; Jia, X.; Lv, Y.; Chen, L.; Xu, Y.; Shi, Y.; Guo, X. Cu-Doped Porous Carbon Derived from Heavy Metal-Contaminated Sewage Sludge for High-Performance Supercapacitor Electrode Materials. Nanomaterials 2019, 9, 892. [Google Scholar] [CrossRef]
- Shoeb, M.; Mashkoor, F.; Naved Khan, M.; Kim, B.-J.; Jeong, C. Waste to Energy Strategy: Graphene-Supported Au-Ag2O PolyIndole Nanocomposites for Antimony Adsorption and Their Sequential Utilization in Supercapacitors Device. Sep. Purif. Technol. 2025, 354, 128656. [Google Scholar] [CrossRef]
- Mashkoor, F.; Shoeb, M.; Khan, M.N.; Jeong, C. CNT Supported Sm/Co-LDH for Antimony Adsorption and Subsequent Application in Supercapacitor to Prevent Secondary Pollution. J. Alloys Compd. 2024, 981, 173557. [Google Scholar] [CrossRef]
- Popadić, D.; Gavrilov, N.; Ignjatović, L.; Krajišnik, D.; Mentus, S.; Milojević-Rakić, M.; Bajuk-Bogdanović, D. How to Obtain Maximum Environmental Applicability from Natural Silicates. Catalysts 2022, 12, 519. [Google Scholar] [CrossRef]
- Zaher, A.; Kamal, W.; Essam, D.; Yousry, E.M.; Mahmoud, R. Repurposing Co-Fe LDH and Co-Fe LDH/Cellulose Micro-Adsorbents for Sustainable Energy Generation in Direct Methanol Fuel Cells. J. Water Process Eng. 2024, 62, 105317. [Google Scholar] [CrossRef]
- Abdel-Hady, E.E.; Mahmoud, R.; Hafez, S.H.M.; Mohamed, H.F.M. Hierarchical Ternary ZnCoFe Layered Double Hydroxide as Efficient Adsorbent and Catalyst for Methanol Electrooxidation. J. Mater. Res. Technol. 2022, 17, 1922–1941. [Google Scholar] [CrossRef]
- Yu, J.; Tang, T.; Cheng, F.; Huang, D.; Martin, J.L.; Brewer, C.E.; Grimm, R.L.; Zhou, M.; Luo, H. Exploring Spent Biomass-Derived Adsorbents as Anodes for Lithium Ion Batteries. Mater. Today Energy 2021, 19, 100580. [Google Scholar] [CrossRef]
- An, Y.; Zhang, W.; Zhang, X.; Zhong, Y.; Ding, L.; Hao, Y.; White, M.; Chen, Z.; An, Z.; Wang, X. Adsorption Recycling and High-Value Reutilization of Heavy-Metal Ions from Wastewater: As a High-Performance Anode Lithium Battery. Langmuir 2023, 39, 12324–12335. [Google Scholar] [CrossRef]
- Ma, J.; Liu, C. Turning Waste into Treasure: Reuse of Contaminant-Laden Adsorbents (Cr(vi)-Fe3O4/C) as Anodes with High Potassium-Storage Capacity. J. Colloid Interface Sci. 2021, 582, 1107–1115. [Google Scholar] [CrossRef]
- Goswami, B.; Das, C.; Mahanta, D. Effect of Dye-Adsorption on Fe3O4-Polypyrrole Nanocomposite as Electrode Material in Electrochemical Capacitors. J. Energy Storage 2021, 44, 103429. [Google Scholar] [CrossRef]
- Ranković, M.; Jevremović, A.; Janošević Ležaić, A.; Arsenijević, A.; Rupar, J.; Dobričić, V.; Nedić Vasiljević, B.; Gavrilov, N.; Bajuk-Bogdanović, D.; Milojević-Rakić, M. Can Zeolite-Supporting Acridines Boost Their Anticancer Performance? J. Funct. Biomater. 2023, 14, 173. [Google Scholar] [CrossRef]
- Jevremović, A.; Stanojković, A.; Arsenijević, D.; Arsenijević, A.; Arzumanyan, G.; Mamatkulov, K.; Petrović, J.; Nedić Vasiljević, B.; Bajuk-Bogdanović, D.; Milojević-Rakić, M. Mitigating Toxicity of Acetamiprid Removal Techniques—Fe Modified Zeolites in Focus. J. Hazard. Mater. 2022, 436, 129226. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, X.; Pan, H.; Zeng, X.; Li, G.; Liu, H.; Kong, J.; Zhao, H.; An, T. Experimental and DFT Investigations on Adsorption–Regeneration Performance and Deactivation Mechanism over Engineered Carbon Fiber: Role of Pore Structure and Functional Groups. Environ. Sci. Nano 2023, 10, 2790–2798. [Google Scholar] [CrossRef]
- Liu, X.; Tai, L.; Huang, P.; Ma, W.; Jin, F. Unveiling Adsorption Mechanisms and Regeneration Challenges of Durian Peel Biochar for Ciprofloxacin Removal: Batch Experiments and Dft Study. J. Water Process Eng. 2025, 75, 107991. [Google Scholar] [CrossRef]
- Shi, B.; Fu, X.; Zhao, C.; Li, M.; Rao, Y.; Komarneni, S.; Yang, H. Insight into Properties and Reutilization Potential of Spent Polyaniline Adsorbents Containing Transition Metals through DFT Calculations. Sep. Purif. Technol. 2024, 335, 126182. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jevremović, A.; Ranković, M.; Janošević Ležajić, A.; Uskoković-Marković, S.; Nedić Vasiljević, B.; Gavrilov, N.; Bajuk-Bogdanović, D.; Milojević-Rakić, M. Regeneration or Repurposing of Spent Pollutant Adsorbents in Energy-Related Applications: A Sustainable Choice? Sustain. Chem. 2025, 6, 28. https://doi.org/10.3390/suschem6030028
Jevremović A, Ranković M, Janošević Ležajić A, Uskoković-Marković S, Nedić Vasiljević B, Gavrilov N, Bajuk-Bogdanović D, Milojević-Rakić M. Regeneration or Repurposing of Spent Pollutant Adsorbents in Energy-Related Applications: A Sustainable Choice? Sustainable Chemistry. 2025; 6(3):28. https://doi.org/10.3390/suschem6030028
Chicago/Turabian StyleJevremović, Anka, Maja Ranković, Aleksandra Janošević Ležajić, Snežana Uskoković-Marković, Bojana Nedić Vasiljević, Nemanja Gavrilov, Danica Bajuk-Bogdanović, and Maja Milojević-Rakić. 2025. "Regeneration or Repurposing of Spent Pollutant Adsorbents in Energy-Related Applications: A Sustainable Choice?" Sustainable Chemistry 6, no. 3: 28. https://doi.org/10.3390/suschem6030028
APA StyleJevremović, A., Ranković, M., Janošević Ležajić, A., Uskoković-Marković, S., Nedić Vasiljević, B., Gavrilov, N., Bajuk-Bogdanović, D., & Milojević-Rakić, M. (2025). Regeneration or Repurposing of Spent Pollutant Adsorbents in Energy-Related Applications: A Sustainable Choice? Sustainable Chemistry, 6(3), 28. https://doi.org/10.3390/suschem6030028