Next Issue
Volume 5, March
Previous Issue
Volume 4, September
 
 

Sustain. Chem., Volume 4, Issue 4 (December 2023) – 3 articles

Cover Story (view full-size image): Zinc oxide nanoparticles (ZnO NPs) with a high photocatalytic performance were prepared by using the aerobic combustion of saccharides. The ZnO NPs were characterized by using TEM, SEM, EDX, XRPD, and UV–Vis spectroscopy. The TEM images revealed that the ZnO NPs have sizes ranging from ~20 to 35 nm with a bandgap of ~3.32 eV. The XRPD pattern revealed the hexagonal wurtzite crystalline structure of the ZnO NPs. The photocatalytic properties of the ZnO NPs were studied. The terephthalic acid photoluminescence technique was also used to study the generation of a hydroxyl radical (•OH) by ZnO NPs. The saccharide-derived ZnO NPs exhibited higher photocatalytic activity than the nonsaccharide-derived ZnO NPs. Varying the type of saccharides used during the calcination had some effect on the degree of the catalytic enhancement. View this paper
  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
31 pages, 6343 KiB  
Review
Envisioning a BHET Economy: Adding Value to PET Waste
by Clarissa C. Westover and Timothy E. Long
Sustain. Chem. 2023, 4(4), 363-393; https://doi.org/10.3390/suschem4040025 - 18 Dec 2023
Cited by 2 | Viewed by 2788
Abstract
Poly(ethylene terephthalate), the fifth most produced polymer, generates significant waste annually. This increased waste production has spurred interest in chemical and mechanical pathways for recycling. The shift from laboratory settings to larger-scale implementation creates opportunities to explore the value and recovery of recycling [...] Read more.
Poly(ethylene terephthalate), the fifth most produced polymer, generates significant waste annually. This increased waste production has spurred interest in chemical and mechanical pathways for recycling. The shift from laboratory settings to larger-scale implementation creates opportunities to explore the value and recovery of recycling products. Derived from the glycolysis of PET, bis(2-hydroxyethyl) terephthalate (BHET) exhibits versatility as a depolymerization product and valuable monomer. BHET exhibits versatility and finds application across diverse industries such as resins, coatings, foams, and tissue scaffolds. Incorporating BHET, which is a chemical recycling product, supports higher recycling rates and contributes to a more sustainable approach to generating materials. This review illuminates the opportunities for BHET as a valuable feedstock for a more circular polymer materials economy. Full article
(This article belongs to the Topic Green and Sustainable Chemistry)
Show Figures

Graphical abstract

24 pages, 3893 KiB  
Review
Polyfluoroalkyl Substances (PFASs) Detection Via Carbon Dots: A Review
by Ricardo M. S. Sendão, Joaquim C. G. Esteves da Silva and Luís Pinto da Silva
Sustain. Chem. 2023, 4(4), 339-362; https://doi.org/10.3390/suschem4040024 - 15 Dec 2023
Viewed by 1180
Abstract
PFASs are a class of highly persistent chemicals that are slowly infiltrating soils and waterways. Thus, there is a great need for fast, sensitive, and reliable techniques to detect PFASs. Conventional methods, such as LC-MS/SPE, allow high sensitivities. However, such methods can be [...] Read more.
PFASs are a class of highly persistent chemicals that are slowly infiltrating soils and waterways. Thus, there is a great need for fast, sensitive, and reliable techniques to detect PFASs. Conventional methods, such as LC-MS/SPE, allow high sensitivities. However, such methods can be complex and expensive. Considering this, it is not surprising that the scientific community has turned their attention to the search for alternatives. New types of PFAS sensors have been reported over the years, being generally part of three classes: optical, electrochemical, or hybrid sensors. Carbon dots (CDs) are new alternative fluorescent sensors that can present great affinity towards PFASs, while allowing for a fast response and promising sensitivity and selectivity. Furthermore, CDs have more attractive properties than traditional fluorophores and even metal-based nanomaterials that make them better candidates for sensing applications. Thus, CDs display great potential for permitting a fast and accurate quantification of PFASs. This review aims to serve as a basis for the future development and optimization of CD-based fluorescent sensors for PFASs. Full article
Show Figures

Figure 1

18 pages, 7761 KiB  
Article
Saccharide-Derived Zinc Oxide Nanoparticles with High Photocatalytic Activity for Water Decontamination and Sanitation
by Kazi Afroza Sultana, Javier Hernandez Ortega, Md Tariqul Islam, Zayra N. Dorado, Bonifacio Alvarado-Tenorio, Ignacio Rene Galindo-Esquivel and Juan C. Noveron
Sustain. Chem. 2023, 4(4), 321-338; https://doi.org/10.3390/suschem4040023 - 3 Nov 2023
Cited by 1 | Viewed by 1401
Abstract
Zinc oxide nanoparticles (ZnO NPs) with a high photocatalytic performance were prepared by using the aerobic combustion of saccharides such as glucose, fructose, dextrin, and starch with zinc nitrate. The ZnO NPs were characterized by using transmission electron microscopy (TEM), scanning electron microscopy [...] Read more.
Zinc oxide nanoparticles (ZnO NPs) with a high photocatalytic performance were prepared by using the aerobic combustion of saccharides such as glucose, fructose, dextrin, and starch with zinc nitrate. The ZnO NPs were characterized by using transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy-dispersive X-ray scattering spectroscopy (EDX), X-ray powder diffraction (XRPD), and UV-vis spectroscopy. The TEM images revealed that the ZnO NPs have sizes ranging from ~20 to 35 nm with a bandgap of ~3.32 eV. The XRPD pattern revealed the hexagonal wurtzite crystalline structure of the ZnO NPs. The photocatalytic properties of the ZnO NPs were studied by the photocatalytic degradation of methyl orange (MO) in deionized water (DIW) and simulated fresh drinking water (FDW) under ultraviolet light (UV-B) and sunlight illumination. The terephthalic acid photoluminescence technique was also used to study the generation of a hydroxyl radical (•OH) by ZnO NPs. The saccharide-derived ZnO NPs exhibited higher photocatalytic activity than the nonsaccharide-derived ZnO NPs. Varying the type of saccharides used during the calcination had some effect on the degree of the catalytic enhancement. Full article
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop