A Robust Recursive State Estimation Method for Uncertain Linear Discrete-Time Systems
Abstract
1. Introduction
- (1)
- A moving-horizon recursive robust state estimator is developed for linear discrete-time systems with bounded parametric uncertainties. By reformulating the MHE cost function using an RLS-based interpretation, the proposed estimator admits a Kalman-like recursive implementation and exploits measurements over a fixed window to improve accuracy. The uncertainty is restricted to a known bounded set (e.g., ), which enables theoretical guarantees. When the model error affects the parameter matrix, the estimator can still maintain good estimation performance
- (2)
- The recursive formulation of the proposed robust state estimator is presented, and its asymptotic stability is demonstrated.
- (3)
- Vehicle–trailer simulations confirm the effectiveness of the proposed algorithm, with comparative results demonstrating its superiority over the classical Kalman filter.
2. Dynamic System Representation and Design of Robust State Estimator
2.1. State Space Model
2.2. Robust State Estimator Design
- (1)
- Initialization. Set and as follow:
- (2)
- Parameter modification. Define the matrices as follows. Replace matrices , , and by:
- (3)
- State estimation updating.
3. Stability and Convergence of the Robust Estimator
3.1. Preliminary Results for Convergence Analysis
3.2. Convergence Analysis
4. Simulation Results
4.1. Model Introduction
4.2. Performance Comparison of Different Algorithms
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| MHE | Moving Horizon Estimation |
| RLS | Recursive Least Square |
| MMSE | Minimum mean square error |
Appendix A
References
- Ma, F.; Liu, F.; Zhang, X.; Wang, P.; Bai, H.; Guo, H. An ultrasonic positioning algorithm based on maximum correntropy criterion extended Kalman filter weighted centroid. Signal Image Video Process. 2018, 12, 1207–1215. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, Y.; Liu, D.; Wang, Q.; Bai, O.; Sun, J.; Rolfe, P. Physiological interference reduction for near infrared spectroscopy brain activity measurement based on recursive least squares adaptive filtering and least squares support vector machines. Comput. Assist. Surg. 2019, 24, 160–166. [Google Scholar] [CrossRef]
- Ahwiadi, M.; Wang, W. An adaptive particle filter technique for system state estimation and prognosis. IEEE Trans. Instrum. Meas. 2020, 69, 6756–6765. [Google Scholar] [CrossRef]
- Rocha, K.D.T.; Terra, M.H. Robust Kalman filter for systems subject to parametric uncertainties. Syst. Control Lett. 2021, 157, 105034. [Google Scholar] [CrossRef]
- He, X.; Xue, W.; Fang, H.; Hu, X. Consistent Kalman filters for nonlinear uncertain systems over sensor networks. Control Theory Technol. 2020, 18, 399–408. [Google Scholar] [CrossRef]
- He, D.; Xu, C.; Zhu, J.; Du, H. Moving horizon H∞ estimation of constrained multisensor systems with uncertainties and fading channels. IEEE Trans. Instrum. Meas. 2021, 70, 1–12. [Google Scholar] [CrossRef]
- Fu, M.; de Souza, C.E.; Xie, L. H∞ estimation for uncertain systems. Int. J. Robust Nonlinear Control 1992, 2, 87–105. [Google Scholar] [CrossRef]
- Milde, W.; Kerle, L. Comparison of Kalman filter and H-infinity filter for battery state of charge estimation with a detailed validation method. Batteries 2025, 11, 161. [Google Scholar] [CrossRef]
- Xu, D.; Qin, Y.; Zhang, H.; Yu, L.; Wang, H. Set-valued Kalman filtering: Event-triggered communication with quantized measurements. Peer-to-Peer Netw. Appl. 2019, 12, 677–688. [Google Scholar] [CrossRef]
- Meslem, N.; Hably, A.; Wang, Z.; Raïssi, T. Set-valued state estimator with sparse and delayed measurements for uncertain discrete-time linear systems. IEEE Control Syst. Lett. 2024, 8, 1234–1239. [Google Scholar] [CrossRef]
- Wang, F.; Wang, Z.; Liang, J.; Liu, X. Resilient state estimation for 2-D time-varying systems with redundant channels: A variance-constrained approach. IEEE Trans. Cybern. 2019, 49, 2479–2489. [Google Scholar] [CrossRef] [PubMed]
- Mahmoud, M.S.; Shi, P. Optimal guaranteed cost filtering for Markovian jump discrete-time systems. Math. Probl. Eng. 2004, 2004, 33–48. [Google Scholar] [CrossRef]
- Sayed, A.H. A framework for state-space estimation with uncertain models. IEEE Trans. Autom. Control 2001, 46, 998–1013. [Google Scholar] [CrossRef]
- Xu, H.; Mannor, S. A Kalman filter design based on the performance/robustness tradeoff. IEEE Trans. Autom. Control 2009, 54, 1171–1175. [Google Scholar]
- Ishihara, J.Y.; Terra, M.H.; Cerri, J.P. Optimal robust filtering for systems subject to uncertainties. Automatica 2015, 52, 120–130. [Google Scholar] [CrossRef]
- Liu, H.; Zhou, T. Robust state estimation for uncertain linear systems with random parametric uncertainties. Sci. China Inf. Sci. 2017, 60, 012202. [Google Scholar] [CrossRef]
- Rao, C.V.; Rawlings, J.B.; Lee, J.H. Constrained linear state estimation—A moving horizon approach. Automatica 2001, 37, 1619–1628. [Google Scholar] [CrossRef]
- Fujimoto, K.; Watanabe, T.; Hashimoto, Y.; Nishida, Y. Stochastic moving horizon estimation for linear discrete-time systems with parameter variation. In Proceedings of the 52nd IEEE Conference on Decision and Control, Firenze, Italy, 10–13 December 2013; pp. 5674–5679. [Google Scholar]
- Wang, Z.; Liu, Z.; Yuan, S.; Li, G. Adaptive horizon size moving horizon estimation with unknown noise statistical properties. Meas. Sci. Technol. 2024, 35, 116132. [Google Scholar] [CrossRef]
- Zhou, T.; Liang, H.Y. On asymptotic behaviors of a sensitivity penalization based robust state estimator. Syst. Control Lett. 2011, 60, 174–180. [Google Scholar] [CrossRef]
- Kailath, T.; Sayed, A.H.; Hassibi, B. Linear Estimation; Prentice Hall: Upper Saddle River, NJ, USA, 2000. [Google Scholar]
- Zhou, T. Sensitivity penalization based robust state estimation for uncertain linear systems. IEEE Trans. Autom. Control 2010, 55, 1018–1024. [Google Scholar] [CrossRef]
- Zhou, K.; Doyle, J.C.; Glover, K. Robust and Optimal Control; Prentice Hall: Hoboken, NJ, USA, 1996; p. 40. [Google Scholar]
- Du, X.; Liu, H.; Yu, H.; Huang, K. Robust fusion estimation under data-driven transmission strategy for multisensor systems with random packet drops. IEEE Trans. Instrum. Meas. 2024, 73, 1–11. [Google Scholar] [CrossRef]
- Zhang, Z.; Mao, Y.; Gao, J.; Liu, H. State estimation of discrete-time T–S fuzzy systems based on robustness ideas. Int. J. Fuzzy Syst. 2023, 25, 2007–2019. [Google Scholar] [CrossRef]
- Sinopoli, B.; Schenato, L.; Franceschetti, M.; Poolla, K.; Jordan, M.I.; Sastry, S.S. Kalman filtering with intermittent observations. IEEE Trans. Autom. Control 2004, 49, 1453–1464. [Google Scholar] [CrossRef]



| Modeling Errors | Case 1 | Case 2 | Case 3 | |
|---|---|---|---|---|
| Algorithm | ||||
| Kalman estimator: using nominal parameters | 17.73 | 21.28 | 20.47 | |
| Kalman estimator: using actual parameters | 12.53 | 17.59 | 16.09 | |
| H-infinity filter | 16.62 | 20.88 | 20.31 | |
| Robust state estimator (n = 0) | 13.67 | 20.54 | 19.7 | |
| Robust state estimator (n = 3) | 13.25 | 20.43 | 19.6 | |
| Robust state estimator (n = 6) | 13.09 | 20.22 | 19.44 | |
| Robust state estimator (n = 8) | 12.94 | 20.15 | 19.4 | |
| Estimation Error Covariance Means (dB) | |
|---|---|
| 0 | 18.12 |
| 0.5 | 19.17 |
| 1.0 | 20.19 |
| 1.5 | 21.43 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Gao, J.; Liu, H. A Robust Recursive State Estimation Method for Uncertain Linear Discrete-Time Systems. Automation 2026, 7, 18. https://doi.org/10.3390/automation7010018
Gao J, Liu H. A Robust Recursive State Estimation Method for Uncertain Linear Discrete-Time Systems. Automation. 2026; 7(1):18. https://doi.org/10.3390/automation7010018
Chicago/Turabian StyleGao, Jiehui, and Huabo Liu. 2026. "A Robust Recursive State Estimation Method for Uncertain Linear Discrete-Time Systems" Automation 7, no. 1: 18. https://doi.org/10.3390/automation7010018
APA StyleGao, J., & Liu, H. (2026). A Robust Recursive State Estimation Method for Uncertain Linear Discrete-Time Systems. Automation, 7(1), 18. https://doi.org/10.3390/automation7010018

