Synthesis of Isoxazol-5-One Derivatives Catalyzed by Amine-Functionalized Cellulose
Abstract
:1. Introduction
2. Materials and Methods
2.1. General
2.2. General Procedure for the Synthesis of arylidenemethyleneisoxazole-5(4H)-ones (4a–4ae)
2.2.1. 4-(3-Hydroxybenzylidene)-3-methylisoxazol-5(4H)-one (4e) (Figures S1 and S2)
2.2.2. 3-Methyl-4-(4-(methylthio)benzylidene)isoxazol-5(4H)-one (4i) (Figures S7 and S8)
2.2.3. 4-(2-Hydroxy-3-methoxybenzylidene)-3-methylisoxazol-5(4H)-one (4j) (Figures S9 and S10)
2.2.4. 4-(3-Ethoxy-4-hydroxybenzylidene)-3-methylisoxazol-5(4H)-one (4k) (Figures S11 and S12)
2.2.5. 4-(4-Hydroxy-3-methoxybenzylidene)-3-methylisoxazol-5(4H)-one (4l) (Figures S13 and S14)
2.2.6. 4-(3,4-Dimethoxybenzylidene)-3-methylisoxazol-5(4H)-one (4m) (Figures S15 and S16)
2.2.7. 3-Methyl-4-(3,4,5-trimethoxybenzylidene)isoxazol-5-(4H)-one (4n) (Figures S17 and S18)
2.2.8. 3-Methyl-4-(thiophen-2-ylmethylene)isoxazol-5(4H)-one (4o) (Figures S19 and S20)
2.2.9. 3-Methyl-4-((1-methyl-1H-pyrrol-2-yl)methylene)isoxazol-5(4H)-one (4p) (Figures S21 and S22)
2.2.10. 3-(Chloromethyl)-4-(4-(dimethylamino)benzylidene)isoxazol-5(4H)-one (4v) (Figures S23 and S24)
2.2.11. 3-(Chloromethyl)-4-(2-hydroxy-3-methoxybenzylidene)isoxazol-5(4H)-one (4w) (Figures S25 and S26)
2.2.12. 3-(Chloromethyl)-4-((1-methyl-1H-pyrrol-2-yl)methylene)isoxazol-5(4H)-one (4aa) (Figures S27 and S28)
2.2.13. 3-(Chloromethyl)-4-(3-(4(dimethylamino)phenyl)allylidene)isoxazol-5(4H)-one (4ab) (Figures S29 and S30)
2.2.14. 4-(4-(Methylthio)benzylidene)-3-propylisoxazol-5(4H)-one (4ac) (Figures S31 and S32)
2.2.15. (4-(Dimethylamino)phenyl)allylidene)-3-propylisoxazol-5(4H)-one (4ad) (Figures S33 and S34)
2.2.16. 4-((1-Methyl-1H-pyrrol-2-yl)methylene)-3-propylisoxazol-5(4H)-one (4ae) (Figures S35 and S36)
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dengale, S.G.; Akolkar, H.N.; Darekar, N.R.; Shaikh, M.H.; Deshmukh, K.K.; Mhaske, S.D.; Karale, B.K.; Raut, D.N.; Khedkar, V.M. Synthesis and Biological Evaluation of 2-(4,5,6,7-Tetrahydrobenzo[c]Isoxazol-3-yl)-4H-Chromen-4-Ones. Polycycl. Aromat. Comp. 2002, 42, 6337–6351. [Google Scholar] [CrossRef]
- Thakur, A.; Verma, M.; Bharti, R.; Sharma, R. Oxazole and isoxazole: From one-pot synthesis to medical applications. Tetrahedron 2022, 119, 132813. [Google Scholar] [CrossRef]
- Arya, G.C.; Kaur, K.; Jaitak, V. Isoxazole derivatives as anticancer agent: A review on synthetic strategies, mechanism of action and SAR studies. Eur. J. Med. Chem. 2021, 221, 113511. [Google Scholar] [CrossRef] [PubMed]
- Farooq, S.; Ngaini, Z. Synthesis of Benzalacetophenone-based Isoxazoline and Isoxazole Derivatives. Curr. Org. Chem. 2022, 26, 679–692. [Google Scholar] [CrossRef]
- Pattanayak, P.; Chatterjee, T. Synthesis of (4-Trifluoromethyl)isoxazoles through a Tandem Trifluoromethyloximation/Cyclization/Elimination Reaction of α,β-Unsaturated Carbonyls. J. Org. Chem. 2023, 88, 5420–5430. [Google Scholar] [CrossRef]
- Pandhurnekar, C.P.; Pandhurnekar, H.C.; Mungole, A.J.; Butoliya, S.S.; Yadao, B.G. A review of recent synthetic strategies and biological activities of isoxazole. J. Heterocycl. Chem. 2023, 60, 536–565. [Google Scholar] [CrossRef]
- Yang, Y.; Zhao, J.; Zhang, X.; Hu, Z.; Wu, Y. Synthesis and characterization of a new isoxazolone-based nonlinear optical crystal: MPMOI. CrystEngComm 2023, 25, 1313–1318. [Google Scholar] [CrossRef]
- Razzaq, S.; Minhas, A.M.; Qazi, N.G.; Nadeem, H.; Khan, A.U.; Ali, F.; Hassan, S.S.; Bungau, S. Novel Isoxazole Derivative Attenuates Ethanol-Induced Gastric Mucosal Injury through Inhibition of H+/K+-ATPase Pump, Oxidative Stress and Inflammatory Pathways. Molecules 2022, 27, 5065. [Google Scholar] [CrossRef]
- Kafle, B.; Aher, N.G.; Khadka, D.; Park, H.; Cho, H. Isoxazol-5(4H)one Derivatives as PTP1B Inhibitors Showing an Anti-Obesity Effect. Chem. Asian J. 2011, 6, 2073–2079. [Google Scholar] [CrossRef]
- Sukanya, S.H.; Venkatesh, T.; Kumar, R.S.; Bodke, Y.D. Facile TiO2 NPs catalysed synthesis of substituted-4-Hydroxy/methoxy benzylidene derivatives as potent antioxidant and anti-tubercular agents. Chem. Data Collect. 2021, 33, 100713. [Google Scholar] [CrossRef]
- Kuchana, M.; Bethapudi, D.R.; Ediga, R.K.; Sisapuram, Y. Synthesis, in-Vitro Antioxidant Activity and In-Silico Prediction of Drug-Likeness Properties of a Novel Compound: 4-(3,5-Di-Tert-Butyl-4-Hydroxybenzylidene)-3-Methylisoxazol-5(4H)-One. J. Appl. Pharm. Sci. 2019, 9, 105–110. [Google Scholar] [CrossRef]
- Ali, M.; Saleem, U.; Anwar, F.; Imran, M.; Nadeem, H.; Ahmad, B.; Ali, T.; Atta-ur-rehman; Ismail, T. Screening of Synthetic Isoxazolone Derivative Role in Alzheimer’s Disease: Computational and Pharmacological Approach. Neurochem. Res. 2021, 46, 905–920. [Google Scholar] [CrossRef]
- Kadam, H.K.; Salkar, K.; Naik, A.P.; Naik, M.M.; Salgaonkar, L.N.; Charya, L.; Pinto, K.C.; Mandrekar, V.K.; Vaz, T. Silica Supported Synthesis and Quorum Quenching Ability of Isoxazolones Against Both Gram Positive and Gram-Negative Bacterial Pathogens. ChemistrySelect 2021, 6, 11718–11728. [Google Scholar] [CrossRef]
- Wang, Y.; Du, D.M. Highly Diastereo- and Enantioselective Synthesis of Isoxazolone-Spirooxindoles via Squaramide-Catalyzed Cascade Michael/Michael Addition Reactions. J. Org. Chem. 2020, 85, 15325–15336. [Google Scholar] [CrossRef] [PubMed]
- Badiger, K.B.; Khatavi, S.Y.; Kamanna, K. Green synthesis of 3-methyl-4-(hetero)aryl methylene isoxazole-5(4H)-ones using WEOFPA/glycerol: Evaluation of anticancer and electrochemical behaviour properties. RSC Med. Chem. 2022, 13, 1367–1377. [Google Scholar] [CrossRef] [PubMed]
- Nongrum, R.; Nongkhlaw, R.; Majaw, S.P.; Kumari, J.; Sriram, D.; Nongkhlaw, R. A nano-organo catalyst mediated approach towards the green synthesis of 3-methyl-4-(phenyl)methylene-isoxazole-5(4H)-one derivatives and biological evaluation of the derivatives as a potent anti-fungal and anti-tubercular agent. Sustain. Chem. Pharm. 2023, 32, 100967. [Google Scholar] [CrossRef]
- Saleem, A.; Farooq, U.; Bukhari, S.M.; Khan, S.; Zaidi, A.; Wani, T.A.; Shaikh, A.J.; Sarwar, R.; Mahmud, S.; Israr, M.; et al. Isoxazole Derivatives against Carbonic Anhydrase: Synthesis, Molecular Docking, MD Simulations, and Free Energy Calculations Coupled with In Vitro Studies. Acs Omega 2022, 7, 30359–30368. [Google Scholar] [CrossRef] [PubMed]
- Sampaio, A.B.S.; Mori, M.S.S.; Albernaz, L.C.; Espindola, L.S.; Salvador, C.E.M.; Andrade, C.K.Z. Continuous Flow Photochemical Synthesis of 3-Methyl-4-arylmethylene Isoxazole-5(4H)-ones through Organic Photoredox Catalysis and Investigation of Their Larvicidal Activity. Catalysts 2023, 13, 518. [Google Scholar] [CrossRef]
- Oraby, A.K.; Abdellatif, K.R.A.; Abdelgawad, M.A.; Attia, K.M.; Dawe, L.N.; Georghiou, P.E. 2,4-Disubstituted Phenylhydrazonopyrazolone and Isoxazolone Derivatives as Antibacterial Agents: Synthesis, Preliminary Biological Evaluation and Docking Studies. ChemistrySelect 2018, 3, 3295–3301. [Google Scholar] [CrossRef]
- Gadkari, Y.U.; Jadhav, N.L.; Hatvate, N.T.; Telvekar, V.N. Concentrated Solar Radiation Aided Green Approach for Preparative Scale and Solvent-Free Synthesis of 3-Methyl-4-(hetero)arylmethylene Isoxazole-5(4H)-ones. ChemistrySelect 2020, 5, 12320–12323. [Google Scholar] [CrossRef]
- Uvarova, E.S.; Kutasevich, A.V.; Lipatov, E.S.; Mityanov, V.S. Assembly of isoxazol-5-one with 2-unsubstituted imidazole N-oxides and aldehydes. Org. Biomol. Chem. 2023, 21, 651–659. [Google Scholar] [CrossRef] [PubMed]
- Galenko, E.E.; Linnik, S.A.; Khoroshilova, O.V.; Novikov, M.S.; Khlebnikov, A.F. Isoxazole Strategy for the Synthesis of α-Aminopyrrole Derivatives. J. Org. Chem. 2019, 84, 11275–11285. [Google Scholar] [CrossRef]
- Galenko, E.E.; Kryukova, M.A.; Novikov, M.S.; Khlebnikov, A.F. An Isoxazole Strategy for the Synthesis of Fully Substituted Nicotinates. J. Org. Chem. 2021, 86, 6888–6896. [Google Scholar] [CrossRef]
- Galenko, E.E.; Novikov, M.S.; Khlebnikov, A.F. [2 + 2] Cycloaddition/Retro-Electrocyclization/Decarboxylation Reaction Sequence: Access to 4-Aminopyridines from Methylideneisoxazolones and Ynamines. J. Org. Chem. 2023, 88, 8854–8864. [Google Scholar] [CrossRef] [PubMed]
- Sabitha, G.; Reddy, M.M.; Archana, B.; Yadav, J.S. A Convenient Synthesis of Benzopyranacetylenes. Synth. Commun. 1998, 28, 573–581. [Google Scholar] [CrossRef]
- Wan, S.H.; Li, X.A.; Liu, Y.H.; Liu, S.T. N-Allylation versus C-allylation of intermediates from aza-Michael adducts of arylideneisoxazol-5-ones. Org. Biomol. Chem. 2020, 18, 9516–9525. [Google Scholar] [CrossRef] [PubMed]
- Macchia, A.; Summa, F.F.; Monaco, G.; Eitzinger, A.; Ofial, A.R.; Di Mola, A.; Massa, A. Access to β-Alkylated γ-Functionalized Ketones via Conjugate Additions to Arylideneisoxazol-5-ones and Mo(CO)6-Mediated Reductive Cascade Reactions. Acs Omega 2022, 7, 8808–8818. [Google Scholar] [CrossRef]
- Li, M.J.; Xiao, H.J.; Xu, P.; Wu, L.T.; Chen, S.Q.; Zhang, Z.; Xu, H. Mechanosynthesis of Pyrrole-2-carboxylic Acids via Copper-Catalyzed Spiroannulation/Ring-Opening Aromatization of 4-Arylidene Isoxazol-5-ones with Enamino Esters. Org. Lett. 2024, 26, 4189–4193. [Google Scholar] [CrossRef]
- MacChia, A.; Eitzinger, A.; Brière, J.F.; Waser, M.; Massa, A. Asymmetric Synthesis of Isoxazol-5-ones and Isoxazolidin-5-ones. Synthesis 2021, 53, 107–122. [Google Scholar] [CrossRef]
- Titov, G.D.; Rostovskii, N.V. (1RS,3SR)-1-(4-Methylbenzyl)-7-phenyl-5-oxa-6-azaspiro [2.4]hept-6-en-4-one. Molbank 2024, 2024, M1799. [Google Scholar] [CrossRef]
- Newar, U.D.; Kumar, S.; Borah, A.; Borra, S.; Manna, P.; Gokulnath, S.; Maurya, R.A. Access to Isoxazoles via Photo-oxygenation of Furan Tethered α-Azidoketones. J. Org. Chem. 2024, 89, 12378–12386. [Google Scholar] [CrossRef] [PubMed]
- Kapale, S.S.; Gadkari, Y.U.; Chaudhari, H.K. Lipase Catalyzed One-Pot Synthesis of 3-Methyl-4-(Hetero) Arylmethyleneisoxazole-5(4H)-Ones under Aqueous Conditions. Polycycl. Aromat. Comp. 2022, 43, 4856–4865. [Google Scholar] [CrossRef]
- Faramarzi, Z.; Kiyani, H. Steglich’s Base Catalyzed Three-Component Synthesis of Isoxazol-5-Ones. Polycycl. Aromat. Comp. 2023, 43, 3099–3121. [Google Scholar] [CrossRef]
- Parveen, M.; Aslam, A.; Ahmad, A.; Alam, M.; Silva, M.R.; Silva, P.S.P. A facile & convenient route for the stereoselective synthesis of Z-isoxazol-5(4H)-ones derivatives catalysed by sodium acetate: Synthesis, multispectroscopic properties, crystal structure with DFT calculations, DNA-binding studies and molecular docking studies. J. Mol. Struct. 2020, 1200, 127067. [Google Scholar] [CrossRef]
- Gharehassanlou, S.; Kiyani, H. A Catalytic Three-Component Synthesis of Isoxazol-5(4H)-Ones under Green Conditions. Indian J. Chem. 2022, 61, 515–520. [Google Scholar] [CrossRef]
- Barkule, A.B.; Gadkari, Y.U.; Telvekar, V.N. One-Pot Multicomponent Synthesis of 3-Methyl-4-(Hetero)Arylmethylene Isoxazole-5(4H)-Ones Using Guanidine Hydrochloride as the Catalyst under Aqueous Conditions. Polycycl. Aromat. Comp. 2022, 42, 5870–5881. [Google Scholar] [CrossRef]
- Saikh, F.; Das, J.; Ghosh, S. Synthesis of 3-methyl-4-arylmethylene isoxazole-5(4H)-ones by visible light in aqueous ethanol. Tetrahedron Lett. 2013, 54, 4679–4682. [Google Scholar] [CrossRef]
- Ostadzadeh, H.; Kiyani, H. Synthesis of Isoxazole-5(4H)-Ones Using Citrazinic Acid as an Organocatalyst in Aqueous Conditions. Org. Prep. Proced. Int. 2023, 55, 538–548. [Google Scholar] [CrossRef]
- Aleaba, G.; Asadi, S.K.; Daneshvar, N.; Shirini, F. Introduction of [2,2’-Bipyridine]-1,1’-Diium Perchlorate as a Novel and Highly Efficient Dicationic Brönsted Acidic Organic Salt for the Synthesis of 3-Methyl-4-Arylmethylene Isoxazole-5(4H)-one Derivatives in Water. Polycycl. Aromat. Comp. 2022, 42, 7569–7581. [Google Scholar] [CrossRef]
- Kumar, R.; Garima, K.; Srivastava, V.; Singh, P.P.; Singh, P.K. Visible light mediated eosin-Y catalysed synthesis of benzylidene-methylisoxazolone. Tetrahedron Lett. 2023, 133, 154841. [Google Scholar] [CrossRef]
- Queiroz, Y.B.; de Freitas, Y.A.; Lima, J.G.M.; Ribeiro, L.; Ramos, L.M. Ionic Liquid-Catalyzed Multicomponent Synthesis of Isoxazole-5(4H)-ones: In vitro Activities and Principal Component Analysis. J. Braz. Chem. Soc. 2024, 35, e-20230188. [Google Scholar] [CrossRef]
- Bi, Y.; Wang, J.; Bian, X.; Chen, M.; Zhu, G.; Zhang, Y.; Gu, Q. Na2S2O3 Catalyzed Three-Component Synthesis and Anti-Bacterial Activity of 3-Methyl-4-(hetero)arylmethylene isoxazole-5(4H)-ones. Chem. Biodivers. 2024, 21, e202400073. [Google Scholar] [CrossRef] [PubMed]
- Reihani, N.; Kiyani, H. Three-Component Synthesis of 4-Arylidene-3-Alkylisoxazol-5(4H)-ones in the Presence of Potassium 2,5-Dioxoimidazolidin-1-ide. Curr. Org. Chem. 2021, 25, 950–962. [Google Scholar] [CrossRef]
- Delfani, A.M.; Kiyani, H.; Zamani, M. An Expeditious Synthesis of Ethyl-2-(4-(arylmethylene)-5-oxo-4,5-dihydroisoxazol-3-yl)acetate Derivatives. Curr. Org. Chem. 2022, 26, 1575–1584. [Google Scholar] [CrossRef]
- Tahmasabi, S.Z.; Kiyani, H.; Samimi, H.A. Efficient Synthesis of 4-Arylmethylene-3-methylisoxazol-5(4H)-one Derivatives Catalyzed by Malic Acid. Lett. Org. Chem. 2023, 20, 167–174. [Google Scholar] [CrossRef]
- Daroughehzadeh, Z.; Kiyani, H. Arylideneisoxazole-5(4H)-one Synthesis by Organocatalytic Three-Component Hetero-Cyclization. Polycycl. Aromat. Comp. 2024, 44, 3200–3221. [Google Scholar] [CrossRef]
- Boureghda, C.; Krid, A.; Dems, M.A.; Boutebdja, M.; Boulcina, R.; Debache, A. Facile synthesis, crystal structure, Hirshfeld surface analysis, DFT calculations, IR and UV–visible spectra analyzes, ADMET and molecular docking studies of arylideneisoxazolone derivatives. J. Mol. Struct. 2024, 1317, 139005. [Google Scholar] [CrossRef]
- Kour, P.; Ahuja, M.; Sharma, P.; Kumar, A.; Kumar, A. An Improved Protocol for the Synthesis of 3,4-Disubstituted Isoxazol-5(4H)-ones through L-Valine-Mediated Domino Three-Component Strategy. J. Chem. Sci. 2020, 132, 108. [Google Scholar] [CrossRef]
- Bhowmik, D.; Kamandar, P.; Gupta, J.; Mete, S.; Hatvate, N. An efficient, green and micellar catalyzed preparative-scale synthesis of 3,4-Disubstituted isoxazole-5(4H)-ones in the water. Sustain. Chem. Environ. 2024, 5, 100070. [Google Scholar] [CrossRef]
- Mane, R.; Yaraguppi, D.A.; Chandrakala, K.B. Kamanna, Synthesis, Computational, Anticancer, and Electrochemical Behavior Studies of 3-Methyl-4-(hetero)aryl Methylene Isoxazole-5(4H)-One. ChemistrySelect 2024, 9, e202401158. [Google Scholar] [CrossRef]
- Ghogare, R.S.; Patankar-Jain, K.; Momin, S.A.H. A Simple and Efficient Protocol for the Synthesis of 3,4-Disubstituted Isoxazol-5(4H)-ones Catalyzed by Succinic Acid Using Water as Green Reaction Medium. Lett. Org. Chem. 2021, 18, 83–87. [Google Scholar] [CrossRef]
- Kundu, T.; Mitra, B.; Ghosh, P. Eucalyptol: An Efficient, Unexplored, Green Media for Transition Metal Free Synthesis of 2,3-Dihydroquinazolin-4(1H)-one Derivatives and Isoxazolone Derivatives. Synth. Commun. 2023, 53, 779–794. [Google Scholar] [CrossRef]
- Haydari, F.; Kiyani, H. Urea-Catalyzed Multicomponent Synthesis of 4-Arylideneisoxazol-5(4H)-one Derivatives under Green Conditions. Res. Chem. Intermed. 2023, 49, 837–858. [Google Scholar] [CrossRef]
- Zhang, D.; Liu, C.; Ren, L.; Li, W.; Luan, B.; Zhang, Y. Vitamin B1-Catalyzed Multicomponent Reaction for Efficient Synthesis of an Isoxazolone Compound by Using Ultrasound in a Water and Its Selective Identification of Metal Ions. ChemistrySelect 2023, 8, e202204658. [Google Scholar] [CrossRef]
- Ghorbani, F.; Kiyani, H.; Pourmousavi, S.A. Facile and Expedient Synthesis of α,β-Unsaturated Isoxazol-5(4H)-ones under Mild Conditions. Res. Chem. Intermed. 2020, 46, 943–959. [Google Scholar] [CrossRef]
- Atharifar, H.; Keivanloo, A.; Maleki, B. Greener Synthesis of 3,4-Disubstituted Isoxazole-5(4H)-ones in a Deep Eutectic Solvent. Org. Prep. Proced. Int. 2020, 52, 517–523. [Google Scholar] [CrossRef]
- Zadem, A.; Cheraiet, Z.; Chahra, B.H. (Betaine: Citric Acid: H2O) a Natural Deep Eutectic Solvent (NaDES)-Mediated Efficient and Green Synthesis of 4-Benzylidene Isoxazol-5-one Derivatives. Polycycl. Aromat. Comp. 2023, in press. [Google Scholar] [CrossRef]
- Aslanpour, S.; Kiyani, H. Rapid Synthesis of Fully Substituted Arylideneisoxazol-5(4H)-one Using Zinc Oxide Nanoparticles. Res. Chem. Intermed. 2023, 49, 4603–4619. [Google Scholar] [CrossRef]
- Kiyani, H.; Ghorbani, F. Expeditious Green Synthesis of 3,4-Disubstituted Isoxazole-5(4H)-Ones Catalyzed by Nano-MgO. Res. Chem. Intermed. 2016, 42, 6831–6844. [Google Scholar] [CrossRef]
- Mosallanezhad, A.; Kiyani, H. Green Synthesis of Arylideneisoxazol-5-Ones Catalyzed by Silicon Dioxide Nanoparticles. Polycycl. Aromat. Comp. 2023, 44, 5022–5037. [Google Scholar] [CrossRef]
- Kulkarni, P. An efficient solvent-free synthesis of 3,4-disubstituted isoxazole-5(4H)-ones using microwave irradiation. J. Indian Chem. Soc. 2021, 98, 100013. [Google Scholar] [CrossRef]
- Shitre, G.V.; Patel, A.R.; Ghogare, R.S. Green synthesis of 3,4-disubstituted isoxazol-5(4H)-one using Gluconic acid aqueous solution as an efficient recyclable medium. Org. Commun. 2023, 16, 87–97. [Google Scholar] [CrossRef]
- Haidary, F.; Kiyani, H. Green and clean synthesis of 4-arylideneisoxazol-5-ones using NaCl aqueous solution. Sustain. Chem. Environ. 2024, 5, 100066. [Google Scholar] [CrossRef]
- Gharib, M.; Nikpassand, M.; Mokhtary, M.; Zare Fekri, L. “Glucono-delta-lactone” as a substrate for preparation of new magnetically recoverable nanocatalyst for the environmentally benign synthesis of novel azo linked 3-methyl-isoxazol-5-ones. Synth. Commun. 2023, 53, 1935–1953. [Google Scholar] [CrossRef]
- Atharifar, H.; Keivanloo, A.; Maleki, B.; Baghayeri, M.; Alinezhad, H. Magnetic nanoparticle supported choline chloride-glucose (deep eutectic solvent) for the one-pot synthesis of 3,4-disubstituted isoxazol-5(4H)-ones. Res. Chem. Intermed. 2024, 50, 281–296. [Google Scholar] [CrossRef]
- Li, X.; Wang, Q.; Zheng, Q.; Kurpiewska, K.; Kalinowska-Tluscik, J.; Dömling, A. Access to Isoquinolin-2(1H)-yl-acetamides and Isoindolin-2-ylacetamides from a Common MCR Precursor. J. Org. Chem. 2022, 87, 14463–14475. [Google Scholar] [CrossRef]
- Xu, R.; Wang, Z.; Zheng, Q.; Patil, P.; Dömling, A. A Bifurcated Multicomponent Synthesis Approach to Polycyclic Quinazolinones. J. Org. Chem. 2022, 87, 13023–13033. [Google Scholar] [CrossRef] [PubMed]
- Kamalifar, S.; Kiyani, H. Facile and Efficient Synthesis of 9-Aryl-1,8-Dioxo-Octahydroxanthenes Catalyzed by Sulfacetamide. Polycycl. Aromat. Comp. 2022, 42, 3675–3693. [Google Scholar] [CrossRef]
- Kiyani, H.; Samimi, H.; Ghorbani, F.; Esmaieli, S. One-pot, four-component synthesis of pyrano[2,3-c]pyrazoles catalyzed by sodium benzoate in aqueous medium. Curr. Chem. Lett. 2013, 2, 197–206. [Google Scholar] [CrossRef]
- Pena-Pereira, F.; Lavilla, I.; de la Calle, I.; Romero, V.; Bendicho, C. Detection of gases and organic vapours by cellulose-based sensors. Anal. Bioanal. Chem. 2023, 415, 4039–4060. [Google Scholar] [CrossRef]
- Abdelhamid, H.N.; Mathew, A.P. Cellulose-Based Nanomaterials Advance Biomedicine: A Review. Int. J. Mol. Sci. 2022, 23, 5405. [Google Scholar] [CrossRef] [PubMed]
- Karhale, S.; Bhenki, C.; Rashinkar, G.; Helavi, V. Covalently anchored sulfamic acid on cellulose as heterogeneous solid acid catalyst for the synthesis of structurally symmetrical and unsymmetrical 1,4-dihydropyridine derivatives. New J. Chem. 2017, 41, 5133–5141. [Google Scholar] [CrossRef]
- Karhale, S. Grafting of sulphamic acid on functionalized sawdust: A novel solid acid catalyst for the synthesis of 1,8-dioxo-octahydroxanthenes. Res. Chem. Intermed. 2020, 46, 3085–3096. [Google Scholar] [CrossRef]
- Pharande, P.S.; Rashinkar, G.S.; Pore, D.M. Cellulose Schiff base-supported Pd(II): An efficient heterogeneous catalyst for Suzuki Miyaura cross-coupling. Res. Chem. Intermed. 2021, 47, 4457–4476. [Google Scholar] [CrossRef]
- Bezerra, R.D.S.; Leal, R.C.; da Silva, S.M.; Morais, I.S.A.; Marques, H.C.T.; Osajima, A.J.; Meneguin, B.A.; Barud, H.D.S.; da Silva Filho, C.E. Direct Modification of Microcrystalline Cellulose with Ethylenediamine for Use as Adsorbent for Removal Amitriptyline Drug from Environment. Molecules 2017, 22, 2039. [Google Scholar] [CrossRef]
- Qiao, Y.; Teng, J.; Wang, S.; Ma, H. Amine-Functionalized Sugarcane Bagasse: A Renewable Catalyst for Efficient Continuous Flow Knoevenagel Condensation Reaction at Room Temperature. Molecules 2018, 23, 43. [Google Scholar] [CrossRef] [PubMed]
- Abdi, M.M.; Tahir, P.M.; Liyana, R.; Javahershenas, R. A Surfactant Directed Microcrystalline Cellulose/Polyaniline Composite with Enhanced Electrochemical Properties. Molecules 2018, 23, 2470. [Google Scholar] [CrossRef]
- Naz, S.; Ahmad, N.; Akhtar, J.; Ahmad, N.M.; Ali, A.; Zia, M. Management of citrus waste by switching in the production of nanocellulose. IET Nanobiotechnol. 2016, 10, 395–399. [Google Scholar] [CrossRef]
- Safari, J.; Ahmadzadeh, M.; Zarnegar, Z. Sonochemical synthesis of 3-methyl-4-arylmethylene isoxazole-5(4H)-ones by amine-modified montmorillonite nanoclay. Catal. Commun. 2016, 86, 91–95. [Google Scholar] [CrossRef]
Entry | Solvent | Catalyst/mg (mol%) 1 | Temp. (°C) | Time (min) | Isolated Yields (%) |
---|---|---|---|---|---|
1 | H2O | - | RT | 75 | 40 |
2 | H2O | 2 (0.024) | RT | 75 | 50 |
3 | H2O | 4 (0.049) | RT | 60 | 55 |
4 | H2O | 6 (0.073) | RT | 50 | 65 |
5 | H2O | 8 (0.098) | RT | 45 | 70 |
6 | H2O | 10 (0.12) | RT | 30 | 85 |
7 | H2O | 12 (0.15) | RT | 30 | 88 |
8 2 | H2O | 14 (0.17) | RT | 25 | 97 |
9 | EtOH | 14 (0.17) | RT | 45 | 65 |
10 | CH3COCH3 | 14 (0.17) | RT | 80 | 20 |
11 | CHCl3 | 14 (0.17) | RT | 80 | trace |
12 | DMF | 14 (0.17) | RT | 80 | Trace |
13 | n-Hexane | 14 (0.17) | RT | 80 | 45 |
14 | H2O:EtOH (1:1) | 14 (0.17) | RT | 50 | 60 |
15 | - | 14 (0.17) | RT | 80 | 35 |
16 | H2O | 14 (0.17) | 50 | 60 | 70 |
17 | H2O | 14 (0.17) | Reflux | 65 | 62 |
Entry | Compound’s Structure | Time (min)/Isolated Yields (%) | Melting Points (Lit. [Ref.]) |
---|---|---|---|
1 | 4a | 40/85 | 140–142 (141–143 [53]) |
2 | 4b | 35/94 | 176–178 (175–177 [53]) |
3 | 4c | 45/90 | 136–137 (134–136 [53]) |
4 | 4d | 30/85 | 200–202 (198–200 [53]) |
5 | 4e | 37/92 | 202–204 (201–203 [53]) |
6 | 4f | 40/94 | 211–212 (211–213 [53]) |
7 | 4g | 40/90 | 225–227 (226–228 [53]) |
8 | 4h | 55/85 | 87–89 (88–90 [33]) |
9 | 4i | 45/89 | 128–130 (128–130 [43]) |
10 | 4j | 35/93 | 218–220 (217–219 [53]) |
11 | 4k | 27/94 | 135–137 (135–138 [43]) |
12 | 4l | 25/97 | 213–214 (212–214 [47]) |
13 | 4m | 30/91 | 127–128 (126–128 [47]) |
14 | 4n | 40/92 | 170–172 (171–173 [53]) |
15 | 4o | 45/90 | 146–148 (145–147 [53]) |
16 | 4p | 40/96 | 212–214 (213–215 [35]) |
17 | 4q | 45/80 | 182–184 (181–183 [53]) |
18 | 4r | 38/92 | 176–178 (175–177 [53]) |
19 | 4s | 45/90 | 178–179 (177–178 [53]) |
20 | 4t | 30/85 | 198–200 (200–201 [53]) |
21 | 4u | 40/94 | 184–185 (184–186 [53]) |
22 | 4v | 40/91 | 179–181 (178–181 [53]) |
23 | 4w | 45/87 | 167–169 (166–168 [53]) |
24 | 4x | 25/96 | 144–146 (143–144 [53]) |
25 | 4y | 45/93 | 128–130 (128–130 [53]) |
26 | 4z | 45/88 | 137–138 (137–139 [53]) |
27 | 4aa | 50/92 | 82–84 (82–83 [35]) |
28 | 4ab | 35/92 | 212–215 (New) |
29 | 4ac | 35/92 | 146–148 (145–148 [43]) |
30 | 4ad | 50/93 | 158–160 (New) |
31 | 4ae | 50/89 | 145–148 (New) |
Entry | Catalyst (Amount)/Conditions | Time (min) | Yield (%) | Refs. |
---|---|---|---|---|
1 | Silica-TLC grade (1 g)/H2O, RT | 1440 | 91 | [13] |
2 | Lipase (30 mg)/H2O, RT | 60–120 | 82 | [32] |
3 | Guanidine hydrochloride (15 mol%)/H2O, RT | 70 | 88 | [36] |
4 | 2,2′-bpy (10 mg)/H2O, reflux | 70 | 80 | [39] |
5 | [H2-BiPyr][ClO4]2/H2O, reflux | 30 | 96 | [39] |
6 | Succinic acid (10)/H2O, RT | 90 | 88 | [51] |
7 | Eucalyptol (1 mL)/RT | 180 | 84 | [52] |
8 | 50 wt % aq. GAAS (5 mL)/70 °C | 45 | 92 | [62] |
9 | Na2S2O3 (30 mol%)/H2O, 65 °C | 300 | 92 | [42] |
10 | Sulfamic acid (15 mol%)/H2O, reflux | 60 | 89 | [47] |
11 | Cell-Pr-NH2 (14 mg, 0.17 mol%)/H2O, RT | 35 | 94 | [This work] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gharehassanlou, S.; Kiyani, H. Synthesis of Isoxazol-5-One Derivatives Catalyzed by Amine-Functionalized Cellulose. Organics 2024, 5, 378-394. https://doi.org/10.3390/org5040020
Gharehassanlou S, Kiyani H. Synthesis of Isoxazol-5-One Derivatives Catalyzed by Amine-Functionalized Cellulose. Organics. 2024; 5(4):378-394. https://doi.org/10.3390/org5040020
Chicago/Turabian StyleGharehassanlou, Sanaz, and Hamzeh Kiyani. 2024. "Synthesis of Isoxazol-5-One Derivatives Catalyzed by Amine-Functionalized Cellulose" Organics 5, no. 4: 378-394. https://doi.org/10.3390/org5040020
APA StyleGharehassanlou, S., & Kiyani, H. (2024). Synthesis of Isoxazol-5-One Derivatives Catalyzed by Amine-Functionalized Cellulose. Organics, 5(4), 378-394. https://doi.org/10.3390/org5040020