Phosphonated Polyethylenimine Maghemite Nanoparticles: A Convenient Support of Palladium for Cross-Coupling Reactions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Characterizations
2.2. Synthetic Procedure
2.2.1. Preparation of Maghemite Nanoparticles [20,21]
2.2.2. Phosphonation of Polyethylenimine [22]
2.2.3. Coating of Maghemite Nanoparticles with PEIP
2.2.4. Synthesis of Palladium Cluster Supported Catalyst NP-PEIP@Pd
2.2.5. General Procedure for Suzuki-Miyaura Cross-Couplings (see Table 1 and Table 2)
Entry | X | Base | Yield 1 (%) |
---|---|---|---|
1 | I | NaOH | 92 |
2 | I | K2CO3 | 97 |
3 | I | KOH | 90 |
4 | I | K3PO4 | 91 |
5 | I | NEt3 | 91 |
6 | Br | NaOH | 23 |
7 | Br | K2CO3 | 68 |
8 | Br | KOH | 31 |
9 | Br | K3PO4 | 31 |
10 | Br | NEt3 | 27 |
11 | Cl | NaOH | 16 |
12 | Cl | K2CO3 | 27 |
13 | Cl | KOH | 12 |
14 | Cl | K3PO4 | 11 |
15 | Cl | NEt3 | 9 |
Entry | X | R1 | R2 | Yield 1 (%) |
---|---|---|---|---|
1 | I | H | CO2Me | 91 |
2 | I | OH | H | 95 |
3 | I | NHCOMe | H | 84 |
4 | I | H | CN | 97 |
5 | I | H | CO2H | 96 |
6 | I | 1-iodo-2-methoxynaphthalene | 63 | |
7 | Br | OH | H | 62 |
8 | Br | H | CO2H | 81 |
9 | Br | H | CO2Me | 74 |
10 | Br | Acenaphthene-5-boronic acid | 27 | |
11 | Cl | H | CO2H | 35 |
12 | Cl | OH | H | 19 |
2.2.6. General Procedure for Mizoroki-Heck Cross-Couplings
2.2.7. Procedure for Tsuji-Trost Cross Couplings (see Table 4)
Entry | R 1 | Nu-H (a or b) | Yield 1 (%) |
---|---|---|---|
1 | OH | a | 54 |
2 | b | 65 | |
3 | OAc | a | 58 |
4 | b | 77 |
- Synthesis of (E)-3-hydroxy-1,3-diphenyl-prop-1-ene
- Synthesis of (E)-1,3-diphenyl-2-propenyl acetate
3. Results
3.1. Preparation and Characterization of the Catalyst
3.2. NP-PEIP@Pd Reactivity
3.2.1. Suzuki-Miyaura Couplings
3.2.2. Mizoroki-Heck Couplings
3.2.3. Tsuji-Trost Couplings
3.3. Recyclability
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Moedritzer, K.; Irani, R.R. The Direct Synthesis of α-Aminomethylphosphonic Acids. Mannich-Type Reactions with Orthophosphorous Acid. J. Org. Chem. 1966, 31, 1603–1607. [Google Scholar] [CrossRef]
- Villemin, D.; Monteil, C.; Bar, N.; Didi, M.A. Phosphonated polyethyleneimines (PEIP) as multi-use polymers. Phosphorous Sulfur Silicone 2015, 190, 879–890. [Google Scholar] [CrossRef]
- Monteil, C.; Bar, N.; Moreau, B.; Retoux, R.; Bee, A.; Talbot, D.; Villemin, D. Phosphonated polyethylenimine coated nanoparticles: Elaboration of size and zeta potential adjustable nanomaterials. Part. Part. Syst. Char. 2014, 32, 219–227. [Google Scholar] [CrossRef]
- Monteil, C.; Bar, N.; Retoux, R.; Henry, J.; Bernay, B.; Villemin, D. Partially phosphonated polyethylenimine-coated nanoparticles as convenient support for enzyme immobilization in bioprocessing. Sens. Actuator B-Chem. 2014, 192, 269–274. [Google Scholar] [CrossRef]
- Dingzhong, Y.; Bin, H. Progress in organic synthesis reactions catalyzed by palladium supported on magnetic nanoparticles. Chin. J. Org. Chem. 2012, 32, 1368–1379. [Google Scholar] [CrossRef] [Green Version]
- Mulahmetovic, E.; Hargaden, G.C. Recent advances in the development of magnetic catalysts for the Suzuki reaction. Ref. J. Chem. 2017, 7, 373–398. [Google Scholar] [CrossRef]
- Nasrollahzadeh, M. Advances in magnetic nanoparticles -supported palladium complexes for coupling reactions. Molecules 2018, 23, 2532. [Google Scholar] [CrossRef] [Green Version]
- Ye, L.; Liu, X.; Lu, Y. A highly controllable, effective, and recyclable magnetic-nanoparticle-supported palladium catalyst for the Suzuki–Miyaura cross-coupling reaction. J. Cat. 2021, 397, 36–43. [Google Scholar] [CrossRef]
- Li, R.; Zhang, P.; Huang, Y.; Zhang, P.; Zhong, H.; Chen, Q. Pd–Fe3O4@C hybrid nanoparticles: Preparation, characterization, and their high catalytic activity toward Suzuki coupling reactions. J. Mat. Chem. 2012, 42, 22750–22755. [Google Scholar] [CrossRef]
- Mori, K.; Kondo, Y.; Yamashita, H. Synthesis and characterization of FePd magnetic nanoparticles modified with chiral BINAP ligand as a recoverable catalyst vehicle for the asymmetric coupling reaction. Phys. Chem. Chem. Phys. 2009, 11, 8949–8954. [Google Scholar] [CrossRef]
- Chung, J.; Kim, J.; Jang, Y.; Byun, S.; Hyeon, T.; Kim, B.M. Heck and Sonogashira cross-coupling reactions using recyclable Pd–Fe3O4 heterodimeric nanocrystal catalysts. Tetrahedron. Lett. 2013, 54, 5192–5196. [Google Scholar] [CrossRef]
- Wang, Z.; Xiao, P.; Shen, B.; He, N. Synthesis of palladium-coated magnetic nanoparticle and its application in Heck reaction. Coll. Surf. A Physicochem. Eng. Asp. 2006, 276, 116–121. [Google Scholar] [CrossRef]
- Jin, M.-J.; Lee, D.-H. A Practical Heterogeneous Catalyst for the Suzuki, Sonogashira, and Stille Coupling Reactions of Unreactive Aryl Chlorides. Angew. Chem. Inter. Ed. 2010, 49, 1119–1122. [Google Scholar] [CrossRef] [PubMed]
- Beygzadeh, M.; Alizadeh, A.; Khodaei, M.M.; Kordestani, D. Biguanide/Pd(OAc)2 immobilized on magnetic nanoparticle as a recyclable catalyst for the heterogeneous Suzuki reaction in aqueous media. Cat. Comm. 2013, 32, 86–91. [Google Scholar] [CrossRef]
- Costa, N.J.S.; Kiyohara, P.K.; Monteiro, A.L.; Coppel, Y.; Philippot, K.; Rossi, L.M. A single-step procedure for the preparation of palladium nanoparticles and a phosphine-functionalized support as catalyst for Suzuki cross-coupling reactions. J. Cat. 2010, 276, 382. [Google Scholar] [CrossRef]
- Yang, J.; Wang, D.; Liu, W.; Zhang, X.; Bian, F.; Yu, W. Palladium supported on a magnetic microgel: An efficient and recyclable catalyst for Suzuki and Heck reactions in water. Green Chem. 2013, 15, 3429–3437. [Google Scholar] [CrossRef]
- Yuan, D.; Chen, L.; Yuan, L.; Liao, S.; Yang, M.; Zhang, Q. Superparamagnetic polymer composite microspheres supported Schiff base palladium complex: An efficient and reusable catalyst for the Suzuki coupling reactions. Chem. Eng. J. 2016, 287, 241–251. [Google Scholar] [CrossRef]
- Veisi, H.; Sarachegol, P.; Hemmati, S. Palladium(II) anchored on polydopamine coated-magnetic nanoparticles (Fe3O4@PDA@Pd(II)): A heterogeneous and core–shell nanocatalyst in Buchwald–Hartwig C–N cross coupling reactions. Polyhedron 2018, 156, 64–71. [Google Scholar] [CrossRef]
- Mutin, P.H.; Guerrero, G.; Vioux, A. Hybrid materials from organophosphorus coupling molecules. J. Mater. Chem. 2005, 15, 3761–3768. [Google Scholar] [CrossRef]
- Massart, R. Preparation of aqueous magnetic liquids in alkaline and acidic media. IEEE Trans. Magn. 1981, 17, 1247–1248. [Google Scholar] [CrossRef]
- Lefebure, S.; Dubois, E.; Cabuil, V.; Neveu, S.; Massart, R. Monodisperse magnetic nanoparticles: Preparation and dispersion in water and oils. J. Mat. Res. 1998, 13, 2975–2981. [Google Scholar] [CrossRef]
- Villemin, D.; Moreau, B.; Elbilali, A.; Didi, M.A.; Kaid, M.; Jaffrès, P.-A. Green synthesis of poly(aminomethylenephosphonic) acids. Phosphorus Sulfur Silicon 2010, 185, 2511–2519. [Google Scholar] [CrossRef]
- Ghorbani-Choghamarani, A.; Norouzi, M. Suzuki, Stille and Heck cross-coupling reactions catalyzed by Fe3O4@PTA–Pd as a recyclable and efficient nanocatalyst in green solvents. New J. Chem. 2016, 40, 6299–6307. [Google Scholar] [CrossRef]
Entry | X | Nu-H (a or b) | R1 | R2 | Yield 1 (%) |
---|---|---|---|---|---|
1 | I | a | H | OMe | 79 |
2 | I | a | CO2H | H | 84 |
3 | I | b | H | CO2H | 94 |
4 | I | b | H | OMe | 87 |
5 | I | b | OH | H | 92 |
6 | Br | a | H | OMe | 57 |
7 | Br | a | H | CO2H | 78 |
8 | Br | b | H | CO2H | 90 |
9 | Br | b | H | COMe | 85 |
10 | Br | b | H | CN | 73 |
11 | Cl | a | H | OMe | 44 |
12 | Cl | a | H | CO2H | 59 |
13 | Cl | a | H | I | 78 |
14 | Cl | b | H | OMe | 55 |
15 | Cl | b | H | CO2H | 68 |
16 | Br | H | CN | 78 | |
17 | 90 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Monteil, C.; Jean, E.; Bar, N.; Villemin, D. Phosphonated Polyethylenimine Maghemite Nanoparticles: A Convenient Support of Palladium for Cross-Coupling Reactions. Organics 2022, 3, 491-501. https://doi.org/10.3390/org3040032
Monteil C, Jean E, Bar N, Villemin D. Phosphonated Polyethylenimine Maghemite Nanoparticles: A Convenient Support of Palladium for Cross-Coupling Reactions. Organics. 2022; 3(4):491-501. https://doi.org/10.3390/org3040032
Chicago/Turabian StyleMonteil, Clément, Etienne Jean, Nathalie Bar, and Didier Villemin. 2022. "Phosphonated Polyethylenimine Maghemite Nanoparticles: A Convenient Support of Palladium for Cross-Coupling Reactions" Organics 3, no. 4: 491-501. https://doi.org/10.3390/org3040032
APA StyleMonteil, C., Jean, E., Bar, N., & Villemin, D. (2022). Phosphonated Polyethylenimine Maghemite Nanoparticles: A Convenient Support of Palladium for Cross-Coupling Reactions. Organics, 3(4), 491-501. https://doi.org/10.3390/org3040032