Numerical Simulation Data Versus PIV Measurement Data for a Hydrogen-Fueled Afterburner System
Abstract
1. Introduction
2. Experimental Setup
2.1. The Afterburner System and the Gas Generator
2.2. The PIV Measurement System
3. Numerical Simulation Setup
3.1. The Calculation Domain and the Computational Grid
3.2. Boundary Conditions and Used Models
4. Numerical and Experimental Results Comparison
4.1. Axial Results
4.2. Transversal Results
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Franco, R.; Celis, C.; da Silva, F. On the suitably of RANS turbulence models for modeling circular bluff-body con-figurations. In Proceedings of the 25th ABCM International Congress of Mechanical Engineering, Uberlandia, Brazil, 20–25 October 2019. [Google Scholar]
- Franco, R.; Celis, C.; da Silva, F. Numerical simulation of bluff body turbulent flows using hybrid RANS/LES turbulence models. J. Braz. Soc. Mech. Sci. Eng. 2023, 45, 1–17. [Google Scholar] [CrossRef]
- Meraner, C.; Li, T.; Ditaranto, M.; Løvås, T. Combustion and NOx Emission Characteristics of a Bluff Body Hydrogen Burner. Energy Fuels 2019, 33, 4598–4610. [Google Scholar] [CrossRef]
- Meraner, C.; Li, T.; Ditaranto, M.; Løvås, T. Cold flow characteristics of a novel bluff body hydrogen burner. Int. J. Hydrogen Energy 2018, 43, 7155–7168. [Google Scholar] [CrossRef]
- Guo, S.; Wang, J.; Zhang, W.; Lin, B.; Wu, Y.; Yu, S.; Li, G.; Hu, Z.; Huang, Z. Investigation on bluff-body and swirl stabilized flames near lean blowoff with PIV/PLIF measurements and LES modelling. Appl. Therm. Eng. 2019, 160, 114021. [Google Scholar] [CrossRef]
- Massey, J.C.; Langella, I.; Swaminathan, N. Large Eddy Simulation of a Bluff Body Stabilised Premixed Flame Using Flamelets. Flow Turbul. Combust 2018, 101, 973–992. [Google Scholar] [CrossRef] [PubMed]
- Abikan, A.; Yang, Z.; Lu, Y. Computational Analysis of Turbulent Flow over a Bluff Body with Drag Reduction Devices. J. Appl. Comput. Mech. 2020, 6, 1210–1219. [Google Scholar]
- Sharma, A.; Kumar, P.; Singh, S.K. Numerical analysis of flow structures behind the bluff body at different aspect ratio. In IOP Conference Series Materials Science and Engineering; IOP Publishing: Bristol, UK, 2018; Volume 402. [Google Scholar]
- Wawrzak, A.; Kantoch, R.; Tyliszczak, A. LES of a non-premixed hydrogen flame stabilized by wavy-wall bluff body. In Proceedings of the 18th International Conference on Fluid Flow Technologies, Budapest, Hungary, 30 August–2 September 2022. [Google Scholar]
- Kummitha, O.R.; Polu, A.R.; Manohar, G.; Sadeq, A.M. Design and performance evaluation of bluff bodies for NOx mitigation in non-premixed hydrogen flames. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2025, 09544062251388324. [Google Scholar] [CrossRef]
- Zhang, Y.; Lu, Q.; Fan, B.; Long, L.; Quaye, E.K.; Pan, J. Effect of multiple bluff bodies on hydrogen/air combustion characteristics and thermal properties in micro combustor. Int. J. Hydrogen Energy 2023, 48, 4064–4072. [Google Scholar] [CrossRef]
- Mo, D.; Lin, Y.; Ma, H.; Han, X.; Liu, Y. Investigation on hydrogen micromix diffusive combustion organization based on bluff body disturbance. Acta Aeronaut. Astronaut. Sin. 2024, 45, 128928. [Google Scholar]
- Hashemi, S.A.; Hajialigol, N.; Mazaheri, K.; Fattahi, A. Investigation of the effect of the flame holder geometry on the flame structure in non-premixed hydrogen—Hydrocarbon composite fuel combustion. Combust. Explos. Shock Waves 2014, 50, 32–41. [Google Scholar] [CrossRef]
- Kim, Y.J.; Lee, B.J.; Im, H.G. Blowoff dynamics of lean premixed flames stabilized on a meso-scale bluff body. In Proceedings of the 11th Asia-Pacific Conference on Combustion, Sydney, Australia, 10–14 December 2017. [Google Scholar]
- Gounder, J.D.; Kutne, P.; Gruber, A. Experimental Investigation of a Bluff Body Burner for Distributed Hydrogen Injection. In Proceedings of the ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition, Charlotte, NC, USA, 26–30 June 2017. [Google Scholar]
- Bagheri, G.; Hosseini, S.E.; Wahid, M.A. Effects of bluff body shape on the flame stability in premixed micro-combustion of hydrogen-air mixture. App. Therm. Eng. 2014, 67, 266–272. [Google Scholar] [CrossRef]
- Du, Y. Cold-State Investigation on a Flame Holder. J. Power Energy Eng. 2013, 1, 45–50. [Google Scholar] [CrossRef]
- Budovsky, A.D.; Vishnyakov, O.I.; Starov, A.V.; Sidorenko, A.A. Experimental and numerical investigation of the flow over v-shaped flame holder. AIP Conf. Proc. 2019, 2125, 030096. [Google Scholar]
- Sadanandan, R.; Chakraborty, A.; Arumugam, V.; Chakravarthy, S. Partially Premixed Flame Stabilization in the Presence of a Combined Swirl and Bluff Body Influenced Flowfield: An Experimental Investigation. ASME J. Eng. Gas Turbines Power 2020, 142, 071010. [Google Scholar] [CrossRef]
- Florean, F.; Petcu, A.; Porumbel, I.; Sandu, C.; Carlanescu, C.; Dumitrascu, G. Experimental Measurements in Reactive and Non-Reactive Turbulent Flow. In Proceedings of the 48th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Atlanta, GA, USA, 30 July–1 August 2012. [Google Scholar]
- Available online: https://mfe.gov.ro/wp-content/uploads/2021/06/0c2887df42dd06420c54c1b4304c5edf.pdf (accessed on 11 October 2025).
- Florean, F.G.; Mangra, A.; Enache, M.; Deaconu, M.; Ciobanu, R.; Carlanescu, R. Experimental research on an afterburner system fueled with hydrogen-methane mixtures. Inventions 2024, 9, 46. [Google Scholar] [CrossRef]
- Florean, F.G.; Mangra, A.; Enache, M.; Carlanescu, R.; Carlanescu, C. Flow field analysis of a hydrogen-fueled flame holder using Particle Image Velocimetry (PIV). Fuels 2025, 6, 20. [Google Scholar] [CrossRef]
- Petcu, A.C. Research Regarding the Use of Camelina Vegetable Oil as Fuel. Ph.D. Thesis, Politehnica University of Bucharest, Bucharest, Romania, 2016. [Google Scholar]
- Fukutani, S.; Kunioshi, N.; Jinno, H. Mechanism of combustion reactions in Hydrogen-Air premixed flames. Bull. Chem. Soc. Jpn. 1990, 63, 2191–2198. [Google Scholar] [CrossRef]






















| Boundary | Conditions |
|---|---|
| Inlet fuel | 0.29 g/s, H2 mass fraction = 1 |
| Inlet flue gas | Cartesian velocity components, total temperature, CO, CO2 and O2 mass fractions |
| Opening | 1 bar, 25 °C, O2 mass fraction = 0.232 |
| Wall | No slip wall, smooth wall, adiabatic |
| Mesh | Coarse | Intermediary | Refined | |
|---|---|---|---|---|
| No. of elements | 5,279,915 | 9,402,879 | 13,226,478 | |
| Point 1 (60 mm from flame holder) | Pressure [Pa] | −83.93 | −96.53 | −98.43 |
| Axial velocity [m/s] | −8.98 | −8.84 | −9.16 | |
| Transversal velocity [m/s] | −3.60 | −1.13 | −1.41 | |
| Spanwise velocity [m/s] | −12.40 | −4.48 | −4.35 | |
| Point 2 (80 mm from flame holder) | Pressure [Pa] | −37.25 | −77.33 | −78.23 |
| Axial velocity [m/s] | −7.13 | −6.89 | −6.70 | |
| Transversal velocity [m/s] | −3.66 | −2.48 | −2.10 | |
| Spanwise velocity [m/s] | −13.10 | −4.68 | −4.32 | |
| Point 3 (100 mm from flame holder) | Pressure [Pa] | −3.41 | −47.43 | −57.54 |
| Axial velocity [m/s] | −3.23 | −1.92 | −2.60 | |
| Transversal velocity [m/s] | −2.81 | −3.58 | −2.38 | |
| Spanwise velocity [m/s] | −12.21 | −3.83 | −2.72 | |
| Point 4 (150 mm from flame holder) | Pressure [Pa] | 80.29 | 117.08 | 123.86 |
| Axial velocity [m/s] | 12.50 | 17.73 | 19.30 | |
| Transversal velocity [m/s] | −3.37 | −8.06 | −8.16 | |
| Spanwise velocity [m/s] | −7.345 | −1.68 | −1.71 | |
| Point 5 (200 mm from flame holder) | Pressure [Pa] | 167.34 | 251.92 | 246.20 |
| Axial velocity [m/s] | 24.35 | 26.95 | 26.45 | |
| Transversal velocity [m/s] | −2.30 | −6.52 | −6.33 | |
| Spanwise velocity [m/s] | −4.44 | −1.07 | −0.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mangra, A.C.; Florean, F.G.; Carlanescu, C. Numerical Simulation Data Versus PIV Measurement Data for a Hydrogen-Fueled Afterburner System. Fuels 2025, 6, 91. https://doi.org/10.3390/fuels6040091
Mangra AC, Florean FG, Carlanescu C. Numerical Simulation Data Versus PIV Measurement Data for a Hydrogen-Fueled Afterburner System. Fuels. 2025; 6(4):91. https://doi.org/10.3390/fuels6040091
Chicago/Turabian StyleMangra, Andreea Cristina, Florin Gabriel Florean, and Cristian Carlanescu. 2025. "Numerical Simulation Data Versus PIV Measurement Data for a Hydrogen-Fueled Afterburner System" Fuels 6, no. 4: 91. https://doi.org/10.3390/fuels6040091
APA StyleMangra, A. C., Florean, F. G., & Carlanescu, C. (2025). Numerical Simulation Data Versus PIV Measurement Data for a Hydrogen-Fueled Afterburner System. Fuels, 6(4), 91. https://doi.org/10.3390/fuels6040091

