Amino Acid Selection Altered Silver Nanoparticles Morphology and Formation of Silver Oxide Layers
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis and Characterization of the Amino Acid-Conjugated Silver Nanoparticles
2.3. Antibacterial Activity Performance of the Synthesized Nanoparticles
3. Results and Discussion
3.1. UV–Vis Characterizations
3.2. HR-TEM and XRD Characterizations
3.3. Antibacterial Characteristics of the Nanoparticles
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AgNP | Silver Nanoparticle |
Ag2O | Silver oxide |
LMA | Lactose metoxyaniline |
G5AS | Galactose 5-aminosaliyclic acid |
HR-TEM: | High-Resolution Transmission Electron Microscopy |
SAED | Selected Area Diffraction |
XRD | X-ray Diffraction |
dsp | Interplanar spacing |
MIC | Minimum Inhibitory Concentration |
MBC | Minimum Bactericidal Concentration |
References
- Shankar, S.; Rhim, J.W. Amino acid mediated synthesis of silver nanoparticles and preparation of antimicrobial agar/silver nanoparticles composite films. Carbohydr. Polym. 2015, 130, 353–363. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Ménard-Moyon, C.; Bianco, A. Self-assembly of amphiphilic amino acid derivatives for biomedical applications. Chem. Soc. Rev. 2022, 51, 3535–3560. [Google Scholar] [CrossRef]
- Annadhasan, M.; SankarBabu, V.R.; Naresh, R.; Umamaheswari, K.; Rajendiran, N. A sunlight-induced rapid synthesis of silver nanoparticles using sodium salt of N-cholyl amino acids and its antimicrobial applications. Colloids Surf. B Biointerfaces 2012, 96, 14–21. [Google Scholar] [CrossRef]
- de Matos, R.A.; Courrol, L.C. Biocompatible silver nanoparticles prepared with amino acids and a green method. Amino Acids 2017, 49, 379–388. [Google Scholar] [CrossRef]
- Maruyama, T.; Fujimoto, Y.; Maekawa, T. Synthesis of gold nanoparticles using various amino acids. J. Colloid Interface Sci. 2015, 447, 254–257. [Google Scholar] [CrossRef]
- Chandraker, K.; Nagwanshi, R.; Jadhav, S.K.; Ghosh, K.K.; Satnami, M.L. Antibacterial properties of amino acid functionalized silver nanoparticles decorated on graphene oxide sheets. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2017, 181, 47–54. [Google Scholar] [CrossRef]
- Tharmavaram, M.; Pandey, G.; Khatri, N.; Rawtani, D. L-arginine-grafted halloysite nanotubes as a sustainable excipient for antifouling composite coating. Mater. Chem. Phys. 2023, 293, 126937. [Google Scholar] [CrossRef]
- Shi, J.; Sun, X.; Zou, X.; Zhang, H. Amino acid-dependent transformations of citrate-coated silver nanoparticles: Impact on morphology, stability and toxicity. Toxicol. Lett. 2014, 229, 17–24. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, P.S.; Kim, C.K.; Han, G.; Forbes, N.S.; Rotello, V.M. Efficient gene delivery vectors by tuning the surface charge density of amino acid-functionalized gold nanoparticles. ACS Nano 2008, 2, 2213–2218. [Google Scholar] [CrossRef]
- Ghosh, P.S.; Han, G.; Erdogan, B.; Rosado, O.; Krovi, S.A.; Rotello, V.M. Nanoparticles featuring amino acid-functionalized side chains as DNA receptors. Chem. Biol. Drug Des. 2007, 70, 13–18. [Google Scholar] [CrossRef] [PubMed]
- Yu, B.; Li, X.; Zheng, W.; Feng, Y.; Wong, Y.S.; Chen, T. PH-responsive cancer-targeted selenium nanoparticles: A transformable drug carrier with enhanced theranostic effects. J. Mater. Chem. B 2014, 2, 5409–5418. [Google Scholar] [CrossRef]
- Wangoo, N.; Bhasin, K.K.; Mehta, S.K.; Suri, C.R. Synthesis and capping of water-dispersed gold nanoparticles by an amino acid: Bioconjugation and binding studies. J. Colloid Interface Sci. 2008, 323, 247–254. [Google Scholar] [CrossRef]
- Durupthy, O.; Bill, J.; Aldinger, F. Bioinspired synthesis of crystalline TiO2: Effect of amino acids on nanoparticles structure and shape. Cryst. Growth Des. 2007, 7, 2696–2704. [Google Scholar] [CrossRef]
- Ebrahiminezhad, A.; Ghasemi, Y.; Rasoul-Amini, S.; Barar, J.; Davaran, S. Impact of amino-acid coating on the synthesis and characteristics of iron-oxide nanoparticles (IONs). Bull. Korean Chem. Soc. 2012, 33, 3957–3962. [Google Scholar] [CrossRef]
- Ebrahiminezhad, A.; Ghasemi, Y.; Rasoul-Amini, S.; Barar, J.; Davaran, S. Preparation of novel magnetic fluorescent nanoparticles using amino acids. Colloids Surf. B Biointerfaces 2013, 102, 534–539. [Google Scholar] [CrossRef] [PubMed]
- Chahar, V.; Sharma, B.; Shukla, G.; Srivastava, A.; Bhatnagar, A. Study of antimicrobial activity of silver nanoparticles synthesized using green and chemical approach. Colloids Surfaces A Physicochem. Eng. Asp. 2018, 554, 149–155. [Google Scholar] [CrossRef]
- Santhosh, A.S.; Sandeep, S.; Manukumar, H.M.; Mahesh, B.; Kumara Swamy, N. Green synthesis of silver nanoparticles using cow urine: Antimicrobial and blood biocompatibility studies. JCIS Open 2021, 3, 100023. [Google Scholar] [CrossRef]
- Nie, P.; Zhao, Y.; Xu, H. Synthesis, applications, toxicity and toxicity mechanisms of silver nanoparticles: A review. Ecotoxicol. Environ. Saf. 2023, 253, 114636. [Google Scholar] [CrossRef]
- Yazgan, İ.; Osonga, F.J.; Miller, R.M.; Kariuki, V.M.; Zhang, J.; Feng, J.; Skeete, Z.; Crapo, H.; Schulte, J.; Panetier, J.; et al. Green one-pot sugar-ligands synthesized property-controlled gold-nanoparticles. ACS Agric. Sci. Technol. 2021, 1, 379–389. [Google Scholar] [CrossRef]
- Sancak, S.; Yazgan, İ.; Bayarslan, A.U.; Ayna, A.; Evecen, S.; Taşdelen, Z.; Gümüş, A.; Sönmez, H.A.; Demir, M.A.; Demir, S.; et al. Surface chemistry dependent toxicity of inorganic nanostructure glycoconjugates on bacterial cells and cancer cell lines. J. Drug Deliv. Sci. Technol. 2023, 79, 104054. [Google Scholar] [CrossRef]
- Kariuki, V.M.; Hoffmeier, J.C.; Yazgan, I.; Sadik, O.A. Seedless synthesis and SERS characterization of multi-branched gold nanoflowers using water soluble polymers. Nanoscale 2017, 9, 8330–8340. [Google Scholar] [CrossRef]
- Mytych, J.; Zebrowski, J.; Lewinska, A.; Wnuk, M. Prolonged Effects of Silver Nanoparticles on p53/p21 Pathway-Mediated Proliferation, DNA Damage Response, and Methylation Parameters in HT22 Hippocampal Neuronal Cells. Mol. Neurobiol. 2017, 54, 1285–1300. [Google Scholar] [CrossRef]
- Yazgan, I.; Gümüş, A.; Gökkuş, K.; Demir, M.A.; Evecen, S.; Sönmez, H.A.; Miller, R.M.; Bakar, F.; Oral, A.; Popov, S.; et al. On the effect of modified carbohydrates on the size and shape of gold and silver nanostructures. Nanomaterials 2020, 10, 1417. [Google Scholar] [CrossRef] [PubMed]
- Ballottin, D.; Fulaz, S.; Souza, M.L.; Corio, P.; Rodrigues, A.G.; Souza, A.O.; Gaspari, P.M.; Gomes, A.F.; Gozzo, F.; Tasic, L. Elucidating Protein Involvement in the Stabilization of the Biogenic Silver Nanoparticles. Nanoscale Res. Lett. 2016, 11, 313. [Google Scholar] [CrossRef]
- Brahmkhatri, V.P.; Singh, A.; Chakraborty, A.; Sharma, R.S.; Chandra, K.; Atreya, H.S. Multilayer protein corona on gold nanorod surface: First evidence of soft corona protein-protein interactions using solution NMR spectroscopy. Appl. Surf. Sci. Adv. 2022, 11, 100272. [Google Scholar] [CrossRef]
- Banerjee, V.; Das, K.P. Interaction of silver nanoparticles with proteins: A characteristic protein concentration dependent profile of SPR signal. Colloids Surf. B Biointerfaces 2013, 111, 71–79. [Google Scholar] [CrossRef] [PubMed]
- Tomak, A.; Yilancioglu, B.; Winkler, D.; Karakus, C.O. Protein corona formation on silver nanoparticles under different conditions. Colloids Surf. A Physicochem. Eng. Asp. 2022, 651, 129666. [Google Scholar] [CrossRef]
- Shannahan, J.H.; Podila, R.; Aldossari, A.A.; Emerson, H.; Powell, B.A.; Ke, P.C.; Rao, A.M.; Brown, J.M. Formation of a protein corona on silver nanoparticles mediates cellular toxicity via scavenger receptors. Toxicol. Sci. 2015, 143, 136–146. [Google Scholar] [CrossRef]
- MiclǍuş, T.; Beer, C.; Chevallier, J.; Scavenius, C.; Bochenkov, V.E.; Enghild, J.J.; Sutherland, D.S. Dynamic protein coronas revealed as a modulator of silver nanoparticle sulphidation in vitro. Nat. Commun. 2016, 7, 11770. [Google Scholar] [CrossRef]
- Amendola, V.; Bakr, O.M.; Stellacci, F. A study of the surface plasmon resonance of silver nanoparticles by the discrete dipole approximation method: Effect of shape, size, structure, and assembly. Plasmonics 2010, 5, 85–97. [Google Scholar] [CrossRef]
- Bastús, N.G.; Piella, J.; Puntes, V. Quantifying the Sensitivity of Multipolar (Dipolar, Quadrupolar, and Octapolar) Surface Plasmon Resonances in Silver Nanoparticles: The Effect of Size, Composition, and Surface Coating. Langmuir 2016, 32, 290–300. [Google Scholar] [CrossRef]
- Yeshchenko, O.A.; Dmitruk, I.M.; Alexeenko, A.A.; Kotko, A.V.; Verdal, J.; Pinchuk, A.O. Size and Temperature Effects on the Surface Plasmon Resonance in Silver Nanoparticles. Plasmonics 2012, 7, 685–694. [Google Scholar] [CrossRef]
- Ahmed, S.; Saifullah; Ahmad, M.; Swami, B.L.; Ikram, S. Green synthesis of silver nanoparticles using Azadirachta indica aqueous leaf extract. J. Radiat. Res. Appl. Sci. 2016, 9, 1–7. [Google Scholar] [CrossRef]
- Elyamny, S.; Eltarahony, M.; Abu-Serie, M.; Nabil, M.M.; Kashyout, A.E.H.B. One-pot fabrication of Ag @Ag2O core–shell nanostructures for biosafe antimicrobial and antibiofilm applications. Sci. Rep. 2021, 11, 22543. [Google Scholar] [CrossRef]
- Korkmaz, N.; Karadağ, A. Microwave assisted green synthesis of Ag, Ag2O, and Ag2O3 nanoparticles. J. Turkish Chem. Soc. Sect. A Chem. 2021, 8, 585–592. [Google Scholar] [CrossRef]
- Rodríguez-León, E.; Iñiguez-Palomares, R.; Navarro, R.E.; Herrera-Urbina, R.; Tánori, J.; Iñiguez-Palomares, C.; Maldonado, A. Synthesis of silver nanoparticles using reducing agents obtained from natural sources (Rumex hymenosepalus extracts). Nanoscale Res. Lett. 2013, 8, 318. [Google Scholar] [CrossRef] [PubMed]
- Wei, W.; Mao, X.; Ortiz, L.A.; Sadoway, D.R. Oriented silver oxide nanostructures synthesized through a template-free electrochemical route. J. Mater. Chem. 2011, 21, 432–438. [Google Scholar] [CrossRef]
- Jiang, X.; Zeng, Q.; Yu, A. A self-seeding coreduction method for shape control of silver nanoplates. Nanotechnology 2006, 17, 4929–4935. [Google Scholar] [CrossRef]
- Shinde, B.H.; Shinde, P.B.; Inamdar, A.K.; Inamdar, S.N.; Chaudhari, S.B. Green synthesis of silver/silver oxide composite nanoparticles using Cuscuta Reflexa plant for the insecticidal applications. Mater. Today Proc. 2023, 92, 549–553. [Google Scholar] [CrossRef]
- Jahan Tamanna, N.; Sahadat Hossain, M.; Mohammed Bahadur, N.; Ahmed, S. Green synthesis of Ag2O & facile synthesis of ZnO and characterization using FTIR, bandgap energy & XRD (Scherrer equation, Williamson-Hall, size-train plot, Monshi-Scherrer model). Results Chem. 2024, 7, 101313. [Google Scholar] [CrossRef]
- Laouini, S.E.; Bouafia, A.; Soldatov, A.V.; Algarni, H.; Tedjani, M.L.; Ali, G.A.M.; Barhoum, A. Green synthesized of Ag/Ag2O nanoparticles using aqueous leaves extracts of phoenix dactylifera l. And their azo dye photodegradation. Membranes 2021, 11, 468. [Google Scholar] [CrossRef]
- Dharmaraj, D.; Krishnamoorthy, M.; Rajendran, K.; Karuppiah, K. Antibacterial and cytotoxicity activities of biosynthesized silver oxide (Ag2O) nanoparticles using Bacillus paramycoides. J. Drug Deliv. Sci. Technol. 2021, 61, 102111. [Google Scholar] [CrossRef]
- Sabzi, M.; Mersagh Dezfuli, S. A study on the effect of compositing silver oxide nanoparticles by carbon on the electrochemical behavior and electronic properties of zinc-silver oxide batteries. Int. J. Appl. Ceram. Technol. 2018, 15, 1446–1458. [Google Scholar] [CrossRef]
- Bastl, Z.; Bezdička, P.; Pola, J. IR laser-induced ablation of Ag in dielectric breakdown of gaseous hydrocarbons: Simultaneous occurrence of metastable hcp and stable fcc Ag nanostructures in C:H shell. J. Photochem. Photobiol. A Chem. 2010, 213, 114–122. [Google Scholar] [CrossRef]
- Zhuang, J.; He, F.; Liu, X.; Si, P.; Gu, F.; Xu, J.; Wang, Y.; Xu, G. In-situ growth of heterophase Ni nanocrystals on graphene for enhanced catalytic reduction of 4-nitrophenol. Nano Res. 2022, 15, 1230–1237. [Google Scholar] [CrossRef]
- Orhan, O.K.; Ponga, M. Surface-plasmon properties of noble metals with exotic phases. J. Phys. Chem. C 2021, 125, 21521–21532. [Google Scholar] [CrossRef]
- Yang, H.; Zhang, J.R.; Cao, W.; Zhen, J.; Wu, J.H. Screw-Dislocation-Driven Hierarchical Superstructures of Ag-Ag2O-AgO Nanoparticles. Crystals 2020, 10, 1084. [Google Scholar] [CrossRef]
- Thevamaran, R.; Griesbach, C.; Yazdi, S.; Ponga, M.; Alimadadi, H.; Lawal, O.; Jeon, S.; Thomas, E.L. Dynamic martensitic phase transformation in single-crystal silver microcubes. Acta Mater. 2020, 182, 131–143. [Google Scholar] [CrossRef]
- Grouchko, M.; Popov, I.; Uvarov, V.; Magdassi, S.; Kamyshny, A. Coalescence of Silver Nanoparticles at Room Temperature: Unusual Crystal Structure Transformation and Dendrite Formation Induced by Self-Assembly. Langmuir 2016, 25, 2501–2503. [Google Scholar] [CrossRef]
- Carlos, J.; Antonieta, M.; Paola, K.; Alejandra, R.; Contreras, S.; Mac, J.H. Characterization of Silver Nanoparticles Obtained by a Green Route and Their Evaluation in the Bacterium of Pseudomonas aeruginosa. Crystals 2020, 10, 395. [Google Scholar] [CrossRef]
- Tepe, M.; Zeybek, M.S. Chemistry of plant extracts directs the silver nanostructures’ crystal structure into hexagonally close-packed: A comparative study using elecampane and blueberry extracts. Anadian J. Chem. 2024, 102, 431–447. [Google Scholar] [CrossRef]
- Tang, S.; Vongehr, S.; Meng, X. Carbon spheres with controllable silver nanoparticle doping. J. Phys. Chem. C 2010, 114, 977–982. [Google Scholar] [CrossRef]
- Dong, C.; Zhang, X.; Cai, H.; Cao, C. Facile and one-step synthesis of monodisperse silver nanoparticles using gum acacia in aqueous solution. J. Mol. Liq. 2014, 196, 135–141. [Google Scholar] [CrossRef]
- Ram, S.; Gautam, A.; Fecht, H.J.; Cai, J.; Bansmann, J.; Behm, R.J. A new allotropic structure of silver nanocrystals nucleated and grown over planar polymer molecules. Philos. Mag. Lett. 2007, 87, 361–372. [Google Scholar] [CrossRef]
- Perni, S.; Hakala, V.; Prokopovich, P. Biogenic synthesis of antimicrobial silver nanoparticles capped with L-cysteine. Colloids Surfaces A Physicochem. Eng. Asp. 2013, 460, 219–224. [Google Scholar] [CrossRef]
- Almufarij, R.S.; Ali, A.E.; Elbah, M.E.; Elmaghraby, N.S.; Khashaba, M.A.; Abdel-Hamid, H.; Fetouh, H.A. Preparation, Characterization of New Antimicrobial Antitumor Hybrid Semi-Organic Single Crystals of Proline Amino Acid Doped by Silver Nanoparticles. Biomedicines 2023, 11, 360. [Google Scholar] [CrossRef] [PubMed]
- Gibała, A.; Żeliszewska, P.; Gosiewski, T.; Krawczyk, A.; Duraczyńska, D.; Szaleniec, J.; Szaleniec, M.; Oćwieja, M. Antibacterial and antifungal properties of silver nanoparticles—Effect of a surface-stabilizing agent. Biomolecules 2021, 11, 1481. [Google Scholar] [CrossRef]
- Chandra, A.; Singh, M. Biosynthesis of amino acid functionalized silver nanoparticles for potential catalytic and oxygen sensing applications. Inorg. Chem. Front. 2018, 5, 233–257. [Google Scholar] [CrossRef]
- Tang, S.; Zheng, J. Antibacterial Activity of Silver Nanoparticles: Structural Effects. Adv. Healthc. Mater. 2018, 7, 1–10. [Google Scholar] [CrossRef]
- Stevanović, M.; Bračko, I.; Milenković, M.; Filipović, N.; Nunić, J.; Filipič, M.; Uskoković, D.P. Multifunctional PLGA particles containing poly(l-glutamic acid)-capped silver nanoparticles and ascorbic acid with simultaneous antioxidative and prolonged antimicrobial activity. Acta Biomater. 2014, 10, 151–162. [Google Scholar] [CrossRef]
Added Amino Acids | Key Contribution of the Nanoparticles | Antibacterial Activity | Reference |
---|---|---|---|
Cysteine | Impeded aggregation, enhanced uniformity | Absent | This study |
Glutamic acid | Resistant to self-oxidation | Slight improvement 1 | This study |
Asparagine | Formation of large 1D plates, Resistant to self-oxidation 1 | Slight improvement 1 | This study |
Proline | Impeded aggregation, size and morphology variation | Slight improvement 1 | This study |
Cysteine | Improved stability depending on the cysteine ratio | Comparison tests were not performed, but the antibacterial activity is weaker than this study. | [55] |
Proline | Improved crystalline and magnetic properties (Co-Ag) | Enhanced antibacterial activity | [56] |
Arginine | Improvement in surface properties | Slight improvement | [57] |
Asparagine, glutamic acid | Improvement in surface properties | Not tested | [58] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bolat, Ş.; Sancak, Z.; Gümüş, A.; Yazgan, I. Amino Acid Selection Altered Silver Nanoparticles Morphology and Formation of Silver Oxide Layers. Appl. Nano 2025, 6, 14. https://doi.org/10.3390/applnano6030014
Bolat Ş, Sancak Z, Gümüş A, Yazgan I. Amino Acid Selection Altered Silver Nanoparticles Morphology and Formation of Silver Oxide Layers. Applied Nano. 2025; 6(3):14. https://doi.org/10.3390/applnano6030014
Chicago/Turabian StyleBolat, Şuheda, Zafer Sancak, Abdurrahman Gümüş, and Idris Yazgan. 2025. "Amino Acid Selection Altered Silver Nanoparticles Morphology and Formation of Silver Oxide Layers" Applied Nano 6, no. 3: 14. https://doi.org/10.3390/applnano6030014
APA StyleBolat, Ş., Sancak, Z., Gümüş, A., & Yazgan, I. (2025). Amino Acid Selection Altered Silver Nanoparticles Morphology and Formation of Silver Oxide Layers. Applied Nano, 6(3), 14. https://doi.org/10.3390/applnano6030014