Previous Issue
Volume 6, June
 
 

Appl. Nano, Volume 6, Issue 3 (September 2025) – 3 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
17 pages, 1571 KiB  
Review
Super-Resolution Microscopy in the Structural Analysis and Assembly Dynamics of HIV
by Aiden Jurcenko, Olesia Gololobova and Kenneth W. Witwer
Appl. Nano 2025, 6(3), 13; https://doi.org/10.3390/applnano6030013 - 31 Jul 2025
Viewed by 264
Abstract
Super-resolution microscopy (SRM) has revolutionized our understanding of subcellular structures, including cell organelles and viruses. For human immunodeficiency virus (HIV), SRM has significantly advanced knowledge of viral structural biology and assembly dynamics. This review analyzes how SRM techniques (particularly PALM, STORM, STED, and [...] Read more.
Super-resolution microscopy (SRM) has revolutionized our understanding of subcellular structures, including cell organelles and viruses. For human immunodeficiency virus (HIV), SRM has significantly advanced knowledge of viral structural biology and assembly dynamics. This review analyzes how SRM techniques (particularly PALM, STORM, STED, and SIM) have been applied over the past decade to study HIV structural components and assembly. By categorizing and comparing studies based on SRM methods, HIV components, and labeling strategies, we assess the strengths and limitations of each approach. Our analysis shows that PALM is most commonly used for live-cell imaging of HIV Gag, while STED is primarily used to study the viral envelope (Env). STORM and SIM have been applied to visualize various components, including Env, capsid, and matrix. Antibody labeling is prevalent in PALM and STORM studies, targeting Env and capsid, whereas fluorescent protein labeling is mainly associated with PALM and focused on Gag. A recent emphasis on Gag and Env points to deeper investigation into HIV assembly and viral membrane dynamics. Insights from SRM studies of HIV not only enhance virological understanding but also inform future research in therapeutic strategies and delivery systems, including extracellular vesicles. Full article
(This article belongs to the Collection Review Papers for Applied Nano Science and Technology)
Show Figures

Figure 1

13 pages, 4458 KiB  
Article
Effect of Vacancy Defect on Mechanical Properties of Single Wall Carbon Nanotube
by Nachiket S. Makh and Ajit D. Kelkar
Appl. Nano 2025, 6(3), 12; https://doi.org/10.3390/applnano6030012 - 27 Jun 2025
Viewed by 500
Abstract
Carbon nanotubes (CNTs) are cylindrical nanostructures formed by rolling a graphene sheet—a hexagonal lattice of carbon atoms—into a tube. Based on the rolling direction, CNTs are categorized as armchair, zigzag, or chiral. The chiral vector, derived from the graphene lattice, defines the CNT’s [...] Read more.
Carbon nanotubes (CNTs) are cylindrical nanostructures formed by rolling a graphene sheet—a hexagonal lattice of carbon atoms—into a tube. Based on the rolling direction, CNTs are categorized as armchair, zigzag, or chiral. The chiral vector, derived from the graphene lattice, defines the CNT’s structure, with chiral CNTs denoted by indices (n, m), where m > 0 and m ≠ n. The mechanical properties and structural stability of CNTs are highly sensitive to defects and impurities within their atomic framework. Among these, point defects such as single-atom vacancies are the most prevalent and can significantly degrade mechanical performance. These defects alter stress distribution, reduce stiffness, and impair strength, thereby limiting the functional reliability of CNTs in advanced applications such as nanocomposites, sensors, and electronic devices. This study examines the influence of vacancy defects on CNT mechanical behavior through a multiscale modeling framework. Molecular dynamics (MD) simulations are conducted using LAMMPS, with structural visualization via Visual Molecular Dynamics (VMD). Concurrently, a finite element (FE) model is developed in ANSYS, where the CNT is idealized as a space frame of elastic beam elements representing carbon–carbon bonds. The integration of atomistic and continuum approaches offers a comprehensive understanding of defect-induced mechanical degradation. The MD and FEM results are in strong agreement with findings in existing literature, validating the adopted methodology. These findings contribute valuable insights into the design and optimization of CNT-based materials for high-performance engineering applications. Full article
(This article belongs to the Collection Feature Papers for Applied Nano)
Show Figures

Figure 1

21 pages, 4516 KiB  
Article
Exploring the Electrochemical Signatures of Heavy Metals on Synthetic Melanin Nanoparticle-Coated Electrodes: Synthesis and Characterization
by Mohamed Hefny, Rasha Gh. Orabi, Medhat M. Kamel, Haitham Kalil, Mekki Bayachou and Nasser Y. Mostafa
Appl. Nano 2025, 6(3), 11; https://doi.org/10.3390/applnano6030011 - 23 Jun 2025
Viewed by 615
Abstract
This study investigates the development and sensing profile of synthetic melanin nanoparticle-coated electrodes for the electrochemical detection of heavy metals, including lead (Pb), cadmium (Cd), cobalt (Co), zinc (Zn), nickel (Ni), and iron (Fe). Synthetic melanin films were prepared in situ by the [...] Read more.
This study investigates the development and sensing profile of synthetic melanin nanoparticle-coated electrodes for the electrochemical detection of heavy metals, including lead (Pb), cadmium (Cd), cobalt (Co), zinc (Zn), nickel (Ni), and iron (Fe). Synthetic melanin films were prepared in situ by the deacetylation of diacetoxy indole (DAI) to dihydroxy indole (DHI), followed by the deposition of DHI monomers onto indium tin oxide (ITO) and glassy carbon electrodes (GCE) using cyclic voltammetry (CV), forming a thin layer of synthetic melanin film. The deposition process was characterized by electrochemical quartz crystal microbalance (EQCM) in combination with linear sweep voltammetry (LSV) and amperometry to determine the mass and thickness of the deposited film. Surface morphology and elemental composition were examined using scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX). In contrast, Fourier-transform infrared (FTIR) and UV–Vis spectroscopy confirmed the melanin’s chemical structure and its polyphenolic functional groups. Differential pulse voltammetry (DPV) and amperometry were employed to evaluate the melanin films’ electrochemical activity and sensitivity for detecting heavy metal ions. Reproducibility and repeatability were rigorously assessed, showing consistent electrochemical performance across multiple electrodes and trials. A comparative analysis of ITO, GCE, and graphite electrodes was conducted to identify the most suitable substrate for melanin film preparation, focusing on stability, electrochemical response, and metal ion sensing efficiency. Finally, the applicability of melanin-coated electrodes was tested on in-house heavy metal water samples, exploring their potential for practical environmental monitoring of toxic heavy metals. The findings highlight synthetic melanin-coated electrodes as a promising platform for sensitive and reliable detection of iron with a sensitivity of 106 nA/ppm and a limit of quantification as low as 1 ppm. Full article
Show Figures

Figure 1

Previous Issue
Back to TopTop