Construction of an Internal Standard Ratiometric Al3+ Selective Fluorescent Probe Based on Rhodamine B-Modified Naphthalimide-Grafted Chitosan Polymer
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Instruments
2.3. Synthesis of P
3. Results and Discussion
3.1. Fabrication and Characterization of Dye-Modified Chitosan Materials
3.2. Characterization of Fluorescent Response of P
3.3. The Influence of Al3+ Concentration on the Fluorescence Spectrum of P
3.4. Comparison of Performance in Recognizing Al3+
3.5. Recognition Mechanism of P with Al3+
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Omiyale, B.O.; Olugbade, T.O.; Abioye, T.E.; Farayibi, P.K. Wire arc additive manufacturing of aluminium alloys for aerospace and automotive applications: A review. Mater. Sci. Technol. 2022, 38, 391–408. [Google Scholar] [CrossRef]
- Yang, L.T.; Hu, N.J.; Fu, Q.X.; Chen, X.Y.; Ren, Y.M.; Ye, X.; Lai, N.W.; Chen, L.S. Effects of aluminum (Al) stress on nitrogen (N) metabolism of leaves and roots in two Citrus species with different Al tolerance. Sci. Hortic. 2024, 334, 113331. [Google Scholar] [CrossRef]
- Meder, D.; Siebner, H.R. Spectral signatures of neurodegenerative diseases: How to decipher them? Brain 2018, 141, 2241–2244. [Google Scholar] [CrossRef]
- El-Kholy, A.A.; El Kholy, E.A.; Al Abdulathim, M.A.; Abdou, A.H.; Karar, H.A.D.; Bushara, M.A.; Abdelaal, K.; Sayed, R. Prevalence and associated factors of anemia among pregnant women and the impact of clinical pharmacist counseling on their awareness level: A cross sectional study. Saudi Pharm. J. 2023, 31, 101699. [Google Scholar] [CrossRef]
- Kojima, T.; Sato, D.; Notomi, M. Damping properties of pre-stressed shape-memory polymer sandwich beam. Int. J. Mater. Prod. Tec. 2022, 64, 78–92. [Google Scholar] [CrossRef]
- Attia, H.N.; Ahmed, K.A. Protective role of functional food in cognitive deficit in young and senile rats. Behav. Pharmacol. 2020, 31, 81–96. [Google Scholar] [CrossRef] [PubMed]
- Fakayode, S.O.; Walgama, C.; Narcisse, V.E.F.; Grant, C. Electrochemical and colorimetric nanosensors for detection of heavy metal ions: A review. Sensors 2023, 23, 9080. [Google Scholar] [CrossRef] [PubMed]
- Sulthana, S.F.; Iqbal, U.M.; Suseela, S.B.; Anbazhagan, R.; Chinthaginjala, R.; Chitathuru, D.; Ahmad, I.; Kim, T.H. Electrochemical sensors for heavy metal ion detection in aqueous medium: A systematic review. ACS Omega 2024, 9, 25493–25512. [Google Scholar] [CrossRef]
- Elmizadeh, H.; Soleimani, M.; Faridbod, F.; Bardajee, G.R. A sensitive nano-sensor based on synthetic ligand-coated CdTe quantum dots for rapid detection of Cr (III) ions in water and wastewater samples. Colloid Polym. Sci. 2018, 296, 1581–1590. [Google Scholar] [CrossRef]
- Surucu, O. Trace determination of heavy metals and electrochemical removal of lead from drinking water. Chem. Pap. 2021, 75, 4227–4238. [Google Scholar] [CrossRef]
- Collot, M.; Pfister, S.; Klymchenko, A.S. Advanced functional fluorescent probes for cell plasma membranes. Curr. Opin. Chem. Biol. 2022, 69, 102161. [Google Scholar] [CrossRef] [PubMed]
- Xu, Q.J.; Qin, W.; Qin, Y.F.; Hu, G.Y.; Xing, Z.Y.; Liu, Y.T. A ratiometric fluorescence probe for visualized detection of heavy metal cadmium and application in water samples and living cells. Molecules 2024, 29, 5331. [Google Scholar] [CrossRef] [PubMed]
- Heidari, F.; Mohajeri, N.; Zarghami, N. Targeted design of green carbon dot-CA-125 aptamer conjugate for the fluorescence imaging of ovarian cancer cell. Cell Biochem. Biophys. 2022, 80, 75–88. [Google Scholar] [CrossRef] [PubMed]
- Sang, F.M.; Xiong, T.D.; Wang, W.J.; Pan, J.X.; Shi, H.H.; Zhao, Y. A simple Schiff Base as fluorescent probe for detection of Al3+ in Aqueous Media and its application in cells imaging. J. Fluoresc. 2023, 33, 177–184. [Google Scholar] [CrossRef]
- Xing, Z.Y.; Wang, J.L.; Huang, J.H.; Chen, X.F.; Zong, Z.A.; Fan, C.B.; Huang, G.M. A significant fluorescence turn-on probe for the recognition of Al3+ and its application. Molecules 2022, 27, 2569. [Google Scholar] [CrossRef]
- Zhou, Z.C.; Niu, W.J.; Lin, Z.Q.; Cui, Y.H.; Tang, X.; Li, Y.J. A novel “turn-off” fluorescent sensor for Al3+ detection based on quinolinecarboxamide-coumarin. Inorg. Chem. Commun. 2020, 121, 108168. [Google Scholar] [CrossRef]
- Zavalishin, M.N.; Gamov, G.A.; Nikitin, G.A.; Pimenov, O.A.; Aleksandriiskii, V.V.; Isagulieva, A.K.; Shibaeva, A.V. A simple vitamin B6-based ffuorescent chemosensor for selective and sensitive Al3+ recognition in water: A spectral and DFT study. Microchem. J. 2024, 197, 109791. [Google Scholar] [CrossRef]
- Cheng, L.; Wang, X.Y.; Yang, W.Q.; Zhang, A.G.; Qu, Z.H.; Fu, H.Y.; Ma, M.L. A fluorescent probe for the detection of Al (III) based on a novel unsymmetrical trisubstituted 1,3,5-triazine. J. Photochem. Photobiol. A 2024, 457, 115923. [Google Scholar] [CrossRef]
- Wang, J.D.; Hu, K.; Wang, H.B.; Sun, W.W.; Han, L.; Li, L.H.; Wei, Y. A novel multi-purpose convenient Al3+ ion fluorescent probe based on phenolphthalein. Mol. Struct. 2023, 1271, 134085. [Google Scholar] [CrossRef]
- Li, W.T.; Zhang, L.M.; Jiang, N.J.; Chen, Y.Q.; Gao, J.; Zhang, J.H.; Yang, B.S.; Liu, J.L. Fabrication of orange fluorescent boron-doped graphene guantum dots for Al3+ ion detection. Molecules 2022, 27, 6771. [Google Scholar] [CrossRef]
- Lu, C.X.; Xu, J.W.; Song, Z.; Dai, Z.Y. Advancements in ESIPT probe research over the past three years based on different fluorophores. Dye. Pigment. 2024, 224, 111994. [Google Scholar] [CrossRef]
- Ganesan, J.S.; Sepperumal, M.; Balasubramaniem, A.; Ayyanar, S. A novel pyrazole bearing imidazole frame as ratiometric fluorescent chemosensor for Al3+/Fe3+ ions and its application in HeLa cell imaging. Spectrochim. Acta A 2020, 230, 117993. [Google Scholar] [CrossRef]
- Tian, Z.N.; Wu, D.Q.; Sun, X.J.; Liu, T.T.; Xing, Z.Y. A benzothiazole-based fluorescent probe for ratiometric detection of Al3+ and its application in water samples and cell imaging. Int. J. Mol. Sci. 2019, 20, 5993. [Google Scholar] [CrossRef] [PubMed]
- Manna, S.; Seth, A.; Gupta, P.; Nandi, G.; Dutta, R.; Jana, S.; Jana, S. Chitosan derivatives as carriers for drug delivery and biomedical applications. ACS Biomater. Sci. Eng. 2023, 9, 2181–2202. [Google Scholar] [CrossRef] [PubMed]
- Deineka, V.; Sulaieva, O.; Pernakov, N.; Radwan-Praglowska, J.; Janus, L.; Korniienko, V.; Husak, Y.; Yanovska, A.; Liubchak, I.; Yusupova, A.; et al. Hemostatic performance and biocompatibility of chitosan-based agents in experimental parenchymal bleeding. Mater. Sci. Eng. C 2021, 120, 111740. [Google Scholar] [CrossRef]
- Bi, S.C.; Wang, M.Y.; Huang, L.; Qin, D.; Cheng, X.J.; Chen, X.G. Evaluation of structure transformation and biocompatibility of chitosan in alkali/urea dissolution system for its large-scale application. Int. J. Biol. Macromol. 2020, 154, 758–764. [Google Scholar] [CrossRef]
- Elnaggar, E.M.; Abusaif, M.S.; Abdel-Baky, Y.M.; Ragab, A.; Omer, A.M.; Ibrahim, I.; Ammar, Y.A. Insight into divergent chemical modifications of chitosan biopolymer. Int. J. Biol. Macromol. 2024, 277, 134347. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Li, C.W.; Cheng, X.J. Water soluble chitosan-amino acid-BODIPY fluorescent probes for selective and sensitive detection of Hg2+/Hg+ ions. Mater. Chem. Phys. 2022, 295, 127081. [Google Scholar] [CrossRef]
- Alavifar, S.M.; Golshan, M.; Hosseini, M.S.; Salami-Kalajahi, M. Rhodamine B- and coumarin-modified chitosan as fluorescent probe for detection of Fe3+ using quenching effect. Cellulose 2024, 31, 3015–3027. [Google Scholar] [CrossRef]
- He, J.X.; Yan, B.Y.; Meng, J.T.; Ran, M.G.; Zhou, Y.T.; Deng, J.F.; Li, C.J.; Yao, Q.L. Study of rhodamine-based fluorescent probes for organic radical intermediates. Eur. J. Org. Chem. 2021, 2021, 4059–4064. [Google Scholar] [CrossRef]
- Zhang, R.Q.; Yan, F.Y.; Huang, Y.C.; Kong, D.P.; Ye, Q.H.; Xu, J.X.; Chen, L. Rhodamine-based ratiometric fluorescent probes based on excitation energy transfer mechanisms: Construction and applications in ratiometric sensing. RSC Adv. 2016, 6, 50732–50760. [Google Scholar] [CrossRef]
- Lei, S.Y.; Meng, X.; Wang, L.Z.; Zhou, J.H.; Qin, D.W.; Duan, H.D. A naphthalimide-based fluorescent probe for the detection and imaging of mercury ions in living cells. Chem. Open 2021, 10, 1116–1122. [Google Scholar] [CrossRef]
- Yu, C.W.; Zhang, J.; Wang, R.; Chen, L.X. Highly sensitive and selective colorimetric and off-on fluorescent probe for Cu2+ based on rhodamine derivative. Org. Biomol. Chem. 2010, 8, 5277–5279. [Google Scholar] [CrossRef]
- Mu, H.L.; Gong, R.; Ma, Q.; Sun, Y.M.; Fu, E.Q. A novel colorimetric and fluorescent chemosensor: Synthesis and selective detection for Cu2+ and Hg2+. Tetrahedron Lett. 2007, 48, 5525–5529. [Google Scholar] [CrossRef]
- Gan, J.; Tian, H.; Wang, Z.H.; Chen, K.; Hill, J.; Lane, P.A.; Rahn, M.D.; Fox, A.M.; Bradley, D.D.C. Synthesis and luminescence properties of novel ferrocene–naphthalimides dyads. J. Organomet. Chem. 2002, 645, 168–175. [Google Scholar] [CrossRef]
- Lu, W.; Xiao, P.; Liu, Z.; Gu, J.; Zhang, J.; Huang, Y.; Huang, Q.; Chen, T. Reaction-driven self-assembled micellar nanoprobes for ratiometric fluorescence detection of CS2 with high selectivity and sensitivity. ACS Appl. Mater. Interfaces 2016, 8, 20100–20109. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Guidelines for Drinking-Water Quality, 2nd ed.; World Health Organization: Geneva, Switzerland, 1998.
- Rodríguez-Cáceres, M.I.; Agbaria, R.A.; Warner, I.M. Fluorescence of metal–ligand complexes of mono-and di-substituted naphthalene derivatives. J. Fluoresc. 2005, 15, 185–190. [Google Scholar] [CrossRef]
- Kim, Y.; Jang, G.; Lee, T.S. Carbon nanodots functionalized with rhodamine and poly (ethylene glycol) for ratiometric sensing of Al ions in aqueous solution. Sens. Actuators B-Chem. 2017, 249, 59–65. [Google Scholar] [CrossRef]
- Gupta, H.; Mohiuddin, I.; Kaur, K.; Singh, R.; Kaur, V. Fluorescent Co/Al-layered double hydroxide intercalated Schiff base-chitosan composite for sensing multiple e-waste metals. Mater. Today Commun. 2023, 37, 106986. [Google Scholar] [CrossRef]
- Zhou, G.C.; Zhang, Z.L.; Meng, Z.Y.; Qian, C.; Li, M.X.; Wang, Z.L.; Yang, Y.Q. A highly specific chalcone derivative grafted ethylcellulose fluorescent probe for rapid and sensitive detection of Al3+ in actual environmental and food samples. Int. J. Biol. Macromol. 2023, 252, 126475. [Google Scholar] [CrossRef]
- Yang, M.; Li, X.X.; Zhang, J.; Yu, C.W. Construction of water-soluble fluorescent probes supported by carboxymethyl chitosan. Spectrochim. Acta A 2025, 329, 125507. [Google Scholar] [CrossRef] [PubMed]
- Qin, J.C.; Fu, Z.H.; Tian, L.M.; Yang, Z.Y. Study on synthesis and fluorescence property of rhodamine-naphthalene conjugate. Spectrochim. Acta A 2020, 229, 117868. [Google Scholar] [CrossRef] [PubMed]
- Pang, B.; Li, C.; Yang, Z. A novel chromone and rhodamine derivative as fluorescent probe for the detection of Zn (II) and Al (III) based on two different mechanisms. Spectrochim. Acta A 2018, 204, 641–647. [Google Scholar] [CrossRef] [PubMed]
- Manna, A.; Sain, D.; Guchhait, N.; Goswami, S. FRET based selective and ratiometric detection of Al (III) with live-cell imaging. New J. Chem. 2017, 41, 14266–14271. [Google Scholar] [CrossRef]
- Ahfad, N.; Mohammadnezhad, G.; Meghdadi, S.; Farrokhpour, H. A naphthylamide based fluorescent probe for detection of Al3+, Fe3+, and CN− with high sensitivity and selectivity. Spectrochim. Acta A 2020, 228, 117753. [Google Scholar] [CrossRef]









| Sample | Added Al3+ (μM) | Sum Results (n = 3) (Mean ± SD, μM) | Recovery (%) | RSD (%) |
|---|---|---|---|---|
| Bottled Water | 5 | 4.82 ± 0.16 | 96.36 | 2.38 |
| 10 | 9.84 ± 0.23 | 98.43 | 2.40 | |
| 15 | 15.75 ± 0.28 | 104.99 | 1.53 | |
| 20 | 19.44 ± 0.27 | 97.22 | 1.42 | |
| Tap Water | 5 | 5.36 ± 0.19 | 107.12 | 2.67 |
| 10 | 9.49 ± 0.31 | 94.85 | 2.02 | |
| 15 | 13.23 ± 0.03 | 88.21 | 0.18 | |
| 20 | 21.89 ± 0.47 | 109.48 | 1.53 |
| Fluorescent Probes | Single/ Ratiometric | LOD, µM | Testing Media | Application | Refs |
|---|---|---|---|---|---|
| CDs-ethylene Glycol-rhodamine derivative | Ratiometric | 18 | Aqueous solution | NA | [38] |
| Chitosan-Co/Al layered double hydroxide derivative | Single (Off) | 0.47 | DMSO:H2O (1:1, v:v) | Sewage water | [39] |
| Ethylcellulose-chalcone analog derivative | Single (On) | 0.23 | DMF:H2O (9:1, v:v) | Water, jellyfish, tea | [40] |
| Carboxymethyl chitosan-benzoyl hydrazide derivative | Single (On) | 0.33/1.0 | Aqueous solution (pH 6.0/7.4) | Water | [41] |
| Rhodamine-naphthalene derivative | Ratiometric | 0.45 | EtOH | NA | [42] |
| Rhodamine B derivative | Ratiometric | 3.18 | EtOH: MeCN:HEPES (6:1:1, v:v:v, pH 7.4) | NA | [43] |
| Rhodamine B derivative | Ratiometric | 0.69 | EtOH:H2O (3:7, v:v, pH 7.4) | Cell | [44] |
| Naphthylamide derivative | Single (On) | 5.022 | DMF:H2O (9:1, v:v) | NA | [45] |
| Chitosan-rhodamine-naphthylamide derivative | Ratiometric | 0.33 | EtOH:H2O (9:1, v:v, pH 6.0) | Water | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, M.; Wen, S.; Zhang, J.; Li, X.; Yu, C. Construction of an Internal Standard Ratiometric Al3+ Selective Fluorescent Probe Based on Rhodamine B-Modified Naphthalimide-Grafted Chitosan Polymer. Chemistry 2025, 7, 193. https://doi.org/10.3390/chemistry7060193
Yang M, Wen S, Zhang J, Li X, Yu C. Construction of an Internal Standard Ratiometric Al3+ Selective Fluorescent Probe Based on Rhodamine B-Modified Naphthalimide-Grafted Chitosan Polymer. Chemistry. 2025; 7(6):193. https://doi.org/10.3390/chemistry7060193
Chicago/Turabian StyleYang, Mei, Shaobai Wen, Jun Zhang, Xiangxiang Li, and Chunwei Yu. 2025. "Construction of an Internal Standard Ratiometric Al3+ Selective Fluorescent Probe Based on Rhodamine B-Modified Naphthalimide-Grafted Chitosan Polymer" Chemistry 7, no. 6: 193. https://doi.org/10.3390/chemistry7060193
APA StyleYang, M., Wen, S., Zhang, J., Li, X., & Yu, C. (2025). Construction of an Internal Standard Ratiometric Al3+ Selective Fluorescent Probe Based on Rhodamine B-Modified Naphthalimide-Grafted Chitosan Polymer. Chemistry, 7(6), 193. https://doi.org/10.3390/chemistry7060193
