First-Principles Study on Direct Z-Scheme SnC/SnS2 Heterostructures for Photocatalytic Water Splitting
Abstract
:1. Introduction
2. Computation Details
3. Results and Discussion
3.1. Geometric Structure and Stability
3.2. Electronic Properties
3.3. Photocatalytic Performance
3.4. Strain Engineering
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Armaroli, N.; Balzani, V. The Future of Energy Supply: Challenges and Opportunities. Angew. Chem. Int. Ed. 2006, 46, 52–66. [Google Scholar] [CrossRef] [PubMed]
- Dorian, J.P.; Franssen, H.T.; Simbeck, D.R. Global challenges in energy. Energy Policy 2006, 34, 1984–1991. [Google Scholar] [CrossRef]
- Ukaogo, P.O.; Ewuzie, U.; Onwuka, C.V. 21—Environmental pollution: Causes, effects, and the remedies. In Microorganisms for Sustainable Environment and Health; Chowdhary, P., Raj, A., Verma, D., Akhter, Y., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 419–429. [Google Scholar]
- Höök, M.; Tang, X. Depletion of fossil fuels and anthropogenic climate change—A review. Energy Policy 2013, 52, 797–809. [Google Scholar] [CrossRef]
- Vohra, K.; Vodonos, A.; Schwartz, J.; Marais, E.A.; Sulprizio, M.P.; Mickley, L.J. Global mortality from outdoor fine particle pollution generated by fossil fuel combustion: Results from GEOS-Chem. Environ. Res. 2021, 195, 110754. [Google Scholar] [CrossRef]
- Edwards, P.P.; Kuznetsov, V.L.; David, W.I.F. Hydrogen energy. Philos. Trans. R. Soc. A. 2007, 365, 1043–1056. [Google Scholar] [CrossRef]
- Veziroğlu, T.N.; Şahin, S. 21st Century’s energy: Hydrogen energy system. Energy Convers. Manage 2008, 49, 1820–1831. [Google Scholar] [CrossRef]
- Fujishima, A.; Honda, K. Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature 1972, 238, 37–38. [Google Scholar] [CrossRef]
- Low, J.; Cao, S.; Yu, J.; Wageh, S. Two-dimensional layered composite photocatalysts. Chem. Commun. 2014, 50, 10768–10777. [Google Scholar] [CrossRef]
- Di, J.; Xiong, J.; Li, H.; Liu, Z. Ultrathin 2D Photocatalysts: Electronic-Structure Tailoring, Hybridization, and Applications. Adv Mater 2017, 30, 1704548. [Google Scholar] [CrossRef]
- Zhou, P.; Yu, J.; Jaroniec, M. All-Solid-State Z-Scheme Photocatalytic Systems. Adv. Mater. 2014, 26, 4920–4935. [Google Scholar] [CrossRef]
- Qi, K.; Cheng, B.; Yu, J.; Ho, W. A review on TiO2-based Z-scheme photocatalysts. Chin. J. Catal. 2017, 38, 1936–1955. [Google Scholar] [CrossRef]
- Bessekhouad, Y.; Robert, D.; Weber, J.V. Bi2S3/TiO2 and CdS/TiO2 heterojunctions as an available configuration for photocatalytic degradation of organic pollutant. J. Photochem. Photobiol. A Chem. 2004, 163, 569–580. [Google Scholar] [CrossRef]
- Bessekhouad, Y.; Robert, D.; Weber, J.V. Photocatalytic activity of Cu2O/TiO2, Bi2O3/TiO2 and ZnMn2O4/TiO2 heterojunctions. Catal. Today 2005, 101, 315–321. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, L.; Chen, Z.; Hu, J.; Li, S.; Wang, Z.; Liu, J.; Wang, X. Semiconductor heterojunction photocatalysts: Design, construction, and photocatalytic performances. Chem. Soc. Rev. 2014, 43, 5234–5244. [Google Scholar] [CrossRef] [PubMed]
- Xu, Q.; Zhang, L.; Yu, J.; Wageh, S.; Al-Ghamdi, A.A.; Jaroniec, M. Direct Z-scheme photocatalysts: Principles, synthesis, and applications. Mater. Today 2018, 21, 1042–1063. [Google Scholar] [CrossRef]
- Yu, J.; Wang, S.; Low, J.; Xiao, W. Enhanced photocatalytic performance of direct Z-scheme g-C3N4–TiO2 photocatalysts for the decomposition of formaldehyde in air. Phys. Chem. Chem. Phys. 2013, 15, 16883–16890. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Shen, Y.; Liu, J.; Lv, L.; Zhou, M.; Yang, X.; Meng, X.; Zhou, Z. Internal electric field enhanced photoelectrochemical water splitting in direct Z-scheme GeC/HfS2 heterostructure: A first-principles study. Appl Phys Lett 2023, 122, 043902. [Google Scholar] [CrossRef]
- Xing, F.; Wang, C.; Liu, S.; Jin, S.; Jin, H.; Li, J. Interfacial Chemical Bond Engineering in a Direct Z-Scheme g-C3N4/MoS2 Heterojunction. ACS Appl. Mater. Interfaces 2023, 15, 11731–11740. [Google Scholar] [CrossRef]
- Luo, Q.; Yin, S.; Sun, X.; Tang, Y.; Feng, Z.; Dai, X. GaN/BS van der Waals heterostructure: A direct Z-scheme photocatalyst for overall water splitting. Appl. Surf. Sci. 2023, 609, 155400. [Google Scholar] [CrossRef]
- Şahin, H.; Cahangirov, S.; Topsakal, M.; Bekaroglu, E.; Akturk, E.; Senger, R.T.; Ciraci, S. Monolayer honeycomb structures of group-IV elements and III-V binary compounds: First-principles calculations. Phys Rev B. 2009, 80, 155453. [Google Scholar] [CrossRef]
- Hoat, D.M.; Naseri, M.; Ponce-Péreze, R.; Hieu, N.N.; Rivas-Silva, J.F.; Vu, T.V.; Tong, H.D.; Cocoletzi, G.H. Structural and electronic properties of chemically functionalized SnC monolayer: A first principles study. Mater. Res. Express 2019, 7, 015013. [Google Scholar] [CrossRef]
- Jin, H.; Dai, Y.; Huang, B.-B. Design of Advanced Photocatalysis System by Adatom Decoration in 2D Nanosheets of Group-IV and III–V Binary Compounds. Sci. Rep. 2016, 6, 23104. [Google Scholar] [CrossRef] [PubMed]
- Arellano, L.G.; Marcos-Viquez, A.L.; DESantiago, F.; Miranda, Á.; Pérez, L.A.; Nakamura, J.; Cruz-Irisson, M. Hydrogen storage on tin carbide monolayers with transition metal adatoms. Int. J. Hydrogen Energy 2023, 48, 37500–37509. [Google Scholar] [CrossRef]
- Rehman, J.; Fan, X.; Laref, A.; Zheng, W.T. Adsorption and Diffusion of Potassium on 2D SnC Sheets for Potential High-Performance Anodic Applications of Potassium-Ion Batteries. ChemElectroChem 2020, 7, 3832–3838. [Google Scholar] [CrossRef]
- Khalid Butt, M.; Muhammad Zeeshan, H.; An Dinh, V.; Zhao, Y.; Wang, S.; Jin, K. Monolayer SnC as anode material for Na ion batteries. Comput. Mater. Sci. 2021, 197, 110617. [Google Scholar] [CrossRef]
- Tang, W.; Wang, G.; Fu, C.; Wang, B.; Yuan, H.; Chen, H. Engineering two-dimensional SnC/HfSSe heterojunction as a direct Z-scheme photocatalyst for water splitting hydrogen evolution. Appl. Surf. Sci. 2023, 626, 157247. [Google Scholar] [CrossRef]
- Sheng, R.Q.; Deng, X.Q.; Zhang, Z.H.; Fan, Z.Q. Tunable electronic and optical properties of SnC/BAs heterostructure by external electric field and vertical strain. Phys. Lett. A 2020, 384, 126150. [Google Scholar] [CrossRef]
- Liang, K.; Wang, J.; Wei, X.; Zhang, Y.; Yang, Y.; Liu, J.; Tian, Y.; Duan, L. Theoretical design of direct Z-scheme SnC/PtSe2 heterostructure with enhanced photocatalytic performance and tunable optoelectronic properties. Phys. E 2024, 155, 115825. [Google Scholar] [CrossRef]
- Setayeshmehr, M.; Haghighi, M.; Mirabbaszadeh, K. A review of tin disulfide (SnS2) composite electrode materials for supercapacitors. Energy Storage 2021, 4, e295. [Google Scholar] [CrossRef]
- Mishra, R.K.; Choi, G.J.; Choi, H.J.; Singh, J.; Lee, S.H.; Gwag, J.S. Potentialities of nanostructured SnS2 for electrocatalytic water splitting: A review. J. Alloys Compd. 2022, 921, 166018. [Google Scholar] [CrossRef]
- Guo, X.; Zhang, F.; Zhang, Y.; Hu, J. Review on the advancement of SnS2 in photocatalysis. J. Mater. Chem. A 2023, 11, 7331–7343. [Google Scholar] [CrossRef]
- Huang, Y.; Deng, H.-X.; Xu, K.; Wang, Z.-X.; Wang, Q.-S.; Wang, F.-M.; Wang, F.; Zhan, X.-Y.; Li, S.-S.; Luo, J.-W.; et al. Highly sensitive and fast phototransistor based on large size CVD-grown SnS2 nanosheets. Nanoscale 2015, 7, 14093–14099. [Google Scholar] [CrossRef]
- Balogun, M.-S.; Qiu, W.; Jian, J.; Huang, Y.; Luo, Y.; Yang, H.; Liang, C.; Lu, X.; Tong, Y. Vanadium Nitride Nanowire Supported SnS2 Nanosheets with High Reversible Capacity as Anode Material for Lithium Ion Batteries. ACS Appl. Mater. Interfaces 2015, 7, 23205–23215. [Google Scholar] [CrossRef]
- Wang, G.; Peng, J.; Zhang, L.; Zhang, J.; Dai, B.; Zhu, M.; Xia, L.; Yu, F. Two-dimensional SnS2@PANI nanoplates with high capacity and excellent stability for lithium-ion batteries. J. Mater. Chem. A 2015, 3, 3659–3666. [Google Scholar] [CrossRef]
- Jiang, Y.; Song, D.; Wu, J.; Wang, Z.; Huang, S.; Xu, Y.; Chen, Z.; Zhao, B.; Zhang, J. Sandwich-like SnS2/Graphene/SnS2 with Expanded Interlayer Distance as High-Rate Lithium/Sodium-Ion Battery Anode Materials. ACS Nano 2019, 13, 9100–9111. [Google Scholar] [CrossRef] [PubMed]
- Meng, L.; Wang, S.; Cao, F.; Tian, W.; Long, R.; Li, L. Doping-Induced Amorphization, Vacancy, and Gradient Energy Band in SnS2 Nanosheet Arrays for Improved Photoelectrochemical Water Splitting. Angew. Chem. Int. Ed. 2019, 58, 6761–6765. [Google Scholar] [CrossRef]
- Cong, X.; Shah, M.N.U.; He, W. Straddling SnSe2/SnS2 van der Waals tunneling heterostructures for high performance broadband photodetectors. J. Mater. Chem. C 2024, 12, 5411–5419. [Google Scholar] [CrossRef]
- Wu, J.; Zhao, R.; Xiang, H.; Yang, C.; Zhong, W.; Zhang, C.; Zhang, Q.; Li, X.; Yang, N. Exposing highly active (100) facet on a SnS2/SnO2 electrocatalyst to boost efficient hydrogen evolution. Appl. Catal. B 2021, 292, 120200. [Google Scholar] [CrossRef]
- Huang, Y.; Song, S.; Lian, J.; Cao, J.; Zheng, Y.; Wang, J.; Zhu, M.; Pan, J.; Li, C. Hollow cubic SnS2/CdS nanoheterojunction for enhanced photocatalytic hydrogen evolution and degradation via MOFs in situ sulfuration. Int. J. Hydrogen Energy 2024, 64, 1030–1039. [Google Scholar] [CrossRef]
- Reddy, P.A.K.; Han, H.; Kim, K.C.; Bae, S. Rational Synthesis of S-Scheme CdS/SnS2 Photocatalysts with Isolated Redox Cocatalysts for Enhanced H2 Production. ACS Sustain. Chem. Eng. 2024, 12, 4979–4992. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186. [Google Scholar] [CrossRef] [PubMed]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef] [PubMed]
- Heyd, J.; Scuseria, G.E.; Ernzerhof, M. Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 2003, 118, 8207–8215. [Google Scholar] [CrossRef]
- Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurateab initioparametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104. [Google Scholar] [CrossRef]
- Bengtsson, L. Dipole correction for surface supercell calculations. Phys. Rev. B 1999, 59, 12301–12304. [Google Scholar] [CrossRef]
- Nosé, S. A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys. 1984, 81, 511–519. [Google Scholar] [CrossRef]
- Baroni, S.; de Gironcoli, S.; Dal Corso, A.; Giannozzi, P. Phonons and related crystal properties from density-functional perturbation theory. Rev. Mod. Phys. 2001, 73, 515–562. [Google Scholar] [CrossRef]
- Wang, J.; Luan, L.; Chen, J.; Zhang, Y.; Wei, X.; Fan, J.; Ni, L.; Liu, C.; Yang, Y.; Liu, J.; et al. PtSe2/SnS2 heterostructure as a direct Z-scheme photocatalyst for water decomposition. Mater. Sci. Semicond. Process 2023, 155, 107225. [Google Scholar] [CrossRef]
- Luo, Y.-F.; Zhang, Y.; Li, J.-H.; Yang, Y.-S.; Sun, S.-Z.; Duan, L. The SnC/WS2 vdW heterojunction: A prospective direct Z-scheme photocatalyst for overall water decomposition with high STH efficiency and catalytic activity. Mol. Catal. 2024, 557, 113983. [Google Scholar] [CrossRef]
- Singh, A.; Jain, M.; Bhattacharya, S. MoS2 and Janus (MoSSe) based 2D van der Waals heterostructures: Emerging direct Z-scheme photocatalysts. Nanoscale Adv. 2021, 3, 2837–2845. [Google Scholar] [CrossRef]
- Togo, A.; Tanaka, I. First principles phonon calculations in materials science. Scr. Mater. 2015, 108, 1–5. [Google Scholar] [CrossRef]
- Choi, J.; Zhang, H.; Du, H.; Choi, J.H. Understanding Solvent Effects on the Properties of Two-Dimensional Transition Metal Dichalcogenides. ACS Appl. Mater. Interfaces 2016, 8, 8864–8869. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.; Zhang, X.; Nie, Y.; Zhu, H.; Xiang, G. Achieving highly efficient 2D SnC monolayer-based photocatalyst for water splitting via a synergistic strategy of S-scheme heterostructure construction and silicon doping. Nanoscale 2024, 16, 4866–4871. [Google Scholar] [CrossRef]
- Cao, J.; Zhang, X.; Zhao, S.; Wang, S.; Cui, J. Mechanism of photocatalytic water splitting of 2D WSeTe/XS2 (X = Hf, Sn, Zr) van der Waals heterojunctions under the interaction of vertical intrinsic electric and built-in electric fiel. Appl. Surf. Sci. 2022, 599, 154012. [Google Scholar] [CrossRef]
- Zhang, Z.; Yates, J.T., Jr. Band Bending in Semiconductors: Chemical and Physical Consequences at Surfaces and Interfaces. Chem. Rev. 2012, 112, 5520–5551. [Google Scholar] [CrossRef]
- Sun, M.; Chou, J.-P.; Gao, J.; Cheng, Y.; Hu, A.; Tang, W.; Zhang, G. Exceptional Optical Absorption of Buckled Arsenene Covering a Broad Spectral Range by Molecular Doping. ACS Omega 2018, 3, 8514–8520. [Google Scholar] [CrossRef]
- Fu, C.-F.; Sun, J.; Luo, Q.; Li, X.; Hu, W.; Yang, J. Intrinsic Electric Fields in Two-dimensional Materials Boost the Solar-to-Hydrogen Efficiency for Photocatalytic Water Splitting. Nano Lett. 2018, 18, 6312–6317. [Google Scholar] [CrossRef]
- Sun, S.-Z.; Zhang, Y.; Luo, Y.-F.; Yang, Y.-S.; Li, J.-H.; Duan, L.; Xie, J.; Guo, T.-T. A direct Z-scheme GaTe/AsP van der Waals heterostructure: A promising high efficiency photocatalyst for overall water splitting with strong optical absorption and superior catalytic activity. Surf. Sci. 2024, 749, 122553. [Google Scholar] [CrossRef]
- Wang, F.; Yang, C.-L.; Wang, M.-S.; Ma, X.-G. PtTe2/Sb2S3 Nanoscale Heterostructures for the Photocatalytic Direct Z-Scheme with High Solar-to-Hydrogen Efficiency: A Theoretical Investigation. ACS Appl. Nano Mater. 2023, 6, 5591–5601. [Google Scholar] [CrossRef]
- He, L.; Long, X.; Zhang, C.; Ma, K.; She, L.; Mi, C.; Yu, M.; Xie, Z.; Wang, L. Direct Z-scheme β-SnSe/HfS2 heterostructure for photocatalytic water splitting: High solar-to-hydrogen efficiency and excellent carrier mobility. Mater. Today Commun. 2024, 38, 108127. [Google Scholar] [CrossRef]
- Nørskov, J.K.; Rossmeisl, J.; Logadottir, A.; Lindqvist, L.; Kitchin, J.R.; Bligaard, T.; Jónsson, H. Origin of the Overpotential for Oxygen Reduction at a Fuel-Cell Cathode. J. Phys. Chem. B 2004, 108, 17886–17892. [Google Scholar] [CrossRef] [PubMed]
- Valdés, Á.; Qu, Z.W.; Kroes, G.J.; Rossmeisl, J.; Nørskov, J.K. Oxidation and Photo-Oxidation of Water on TiO2 Surface. J. Phys. Chem. C 2008, 112, 9872–9879. [Google Scholar] [CrossRef]
- Liang, K.; Wang, J.; Wei, X.; Zhang, Y.; Yang, Y.; Liu, J.; Tian, Y.; Duan, L. SnC/PtS2 heterostructure: A promising direct Z-scheme photocatalyst with tunable electronic optical properties and high solar-to-hydrogen efficiency. Int. J. Hydrogen Energy 2023, 48, 38296–38308. [Google Scholar] [CrossRef]
- Vn, D.; Sen, S.; Chattopadhyaya, M. A density functional study of type I to type II crossover in g-C3N4/CoN4 heterostructure in presence of external perturbation. Int. J. Hydrogen Energy 2024, 91, 1136–1148. [Google Scholar]
- Mao, Y.; Xu, C.; Yuan, J.; Zhao, H. A two-dimensional GeSe/SnSe heterostructure for high performance thin-film solar cells. J. Mater. Chem. A 2019, 7, 11265–11271. [Google Scholar] [CrossRef]
- Mao, Y.; Deng, T.; Li, Y.; He, F. The GeSe/SnSe heterojunction photodetector with self-powered characteristics and high infrared response performance. Appl. Phys. Lett. 2024, 124, 181106. [Google Scholar] [CrossRef]
Stacking | AA | AB | AC | BA | BB | BC |
---|---|---|---|---|---|---|
3.612 | 3.619 | 3.615 | 3.621 | 3.612 | 3.616 | |
3.632 | 3.273 | 3.064 | 3.157 | 3.720 | 2.961 | |
−3.859 | −3.921 | −3.967 | −3.958 | −3.946 | −3.983 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, S.; Mao, Y. First-Principles Study on Direct Z-Scheme SnC/SnS2 Heterostructures for Photocatalytic Water Splitting. Chemistry 2025, 7, 76. https://doi.org/10.3390/chemistry7030076
Zhou S, Mao Y. First-Principles Study on Direct Z-Scheme SnC/SnS2 Heterostructures for Photocatalytic Water Splitting. Chemistry. 2025; 7(3):76. https://doi.org/10.3390/chemistry7030076
Chicago/Turabian StyleZhou, Sisi, and Yuliang Mao. 2025. "First-Principles Study on Direct Z-Scheme SnC/SnS2 Heterostructures for Photocatalytic Water Splitting" Chemistry 7, no. 3: 76. https://doi.org/10.3390/chemistry7030076
APA StyleZhou, S., & Mao, Y. (2025). First-Principles Study on Direct Z-Scheme SnC/SnS2 Heterostructures for Photocatalytic Water Splitting. Chemistry, 7(3), 76. https://doi.org/10.3390/chemistry7030076