Study on the Separation Mechanism of Walnut Shell Kernels on Different Inclined Vibrating Screens
Abstract
1. Introduction
2. Materials and Methods
2.1. DEM Model of Particles and Geometry
2.1.1. Particle Model
2.1.2. Geometry Model
2.2. Selection of Particle Contact Model
2.3. Simulation Conditions
2.4. Angle of Repose Experiment
2.5. Experimental Verification Under Operational Conditions
3. Results
3.1. Model Validation
- Observe the stabilized walnut shell kernel particle pile from the side view direction and grayscale the walnut shell kernel particle pile. Due to the slight difference in the horizontal angles of the two sides, choose the smoother and more regular side as the contour for calculating the angle of repose; in this paper, the left contour line is selected.
- Perform binarization processing on the left contour image of the walnut shell kernel particle pile and find the contour pixel points of the walnut shell kernel particle pile, ultimately obtaining the boundary contour line of the walnut shell kernel particle pile. For simulated walnut shell kernel particle piles, this information can be directly obtained by setting the color of all particles to black, thus directly obtaining a clear image of the grayscaled walnut shell kernel particle pile.
- Finally, fit the left boundary contour line of the walnut shell kernel particle pile to obtain the linear function fitting equation, and then derive the angle of repose of the walnut shell kernel particle pile through Equation (3).
3.2. Results from the Operational Verification Test
3.3. Principle of Walnut Shell Kernel Screening
3.4. The Effect of Screen Inclination Angle on the Sorting Efficiency of Walnut Shells and Kernels
3.5. Analysis of the Retention and Loss Mechanisms of Walnut Shells and Kernels
3.5.1. Analysis of the Mechanism of Walnut Kernel Loss
3.5.2. Analysis of the Mechanism of Walnut Shell Retention
4. Conclusions
- With the increase in the screen surface inclination, both the cleaning rate and the loss rate show an upward trend. However, the cleaning rate gradually increases with the increase in the screen surface inclination, while the loss rate remains stable at first and then shows a turning point at 22°, where it rapidly increases. Within the optimal range of screen surface inclination, the inclination has a significant impact on the separation effect of walnut shells and kernels, but adjusting the screen surface inclination alone cannot achieve complete separation of walnut shells and kernels.
- During the separation on the toothed vibrating screen, the toothed vibrating screen is designed according to the size of the 1/8 kernel, making it easier to fall into the toothed grooves and be pushed upward step by step. In contrast, the size of the 1/2 shell differs significantly from the toothed vibrating screen, and its smoother surface makes it unable to effectively receive the thrust needed for “over-screening,” causing it to slip down to the shell outlet.
- The loss of kernels and retention of shells are primarily caused by the excessive concentration of the mixture in the separation area. This high concentration prevents complete separation due to “enveloping collisions”. Consequently, intense collisions occur in the respective transport areas, ultimately leading to loss. Specifically, kernel loss manifests as either continuous downward loss or alternating upward and downward loss. Meanwhile, the retention process of walnut shells involves two distinct stages: “enveloping collision” followed by “thrust collision”.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
| Vi | Translational velocity, m·s−1 |
| ωk | Angular velocity, rad·s−1 |
| mi | Quality, N |
| Ii | Moment of inertia, Kg·m2 |
| ni | The number of contacts between the walnut shell i and the walnut kernel j |
| Fn | Normal Contact Force, N |
| Normal Damping Force, N·m·s−1 | |
| Tangential contact force, N | |
| Tangential damping force, N·m·s−1 | |
| Tangential Force Moment, N·m | |
| Rolling Friction Torque, N·m | |
| G | Gravity, N |
| Ff | Friction, N |
References
- Panasiewicz, M.; Mazur, J.; Zawiślak, K.; Kulig, R.; Łysiak, G. The Process of Separation of Husked Soybean in Oblique Airflow. Sustainability 2020, 12, 7566. [Google Scholar] [CrossRef]
- Shin, S.-Y.; Kim, M.-H.; Cho, Y.; Kim, D.-C. CFD Analysis and Validation of a Foreign Material Winnowing Machine for Pepper Harvester. Appl. Sci. 2022, 12, 6134. [Google Scholar] [CrossRef]
- Ma, X.; Zhao, L.; Guo, B.; Dang, H. Simulation and Experiment of Rice Cleaning in Air-Separation Device Based on DEM-CFD Coupling Method. Int. J. Agric. Biol. Eng. 2020, 13, 226–233. [Google Scholar] [CrossRef]
- Qu, S.; Zhu, Z.; Mao, W. Research on aerodynamic characteristics of walnut materials and optimization of shell-kernel air separation device. China Oils Fats. 2024, 49, 145–152. [Google Scholar] [CrossRef]
- Li, H.; Tang, Y.; Zhang, H.; Liu, Y.; Zhang, Y.; Niu, H. Technological Parameter Optimization for Walnut Shell-Kernel Winnowing Device Based on Neural Network. Front. Bioeng. Biotechnol. 2023, 11, 1107836. [Google Scholar] [CrossRef]
- Khir, R.; Pan, Z.; Atungulu, G.G.; Thompson, J.F. Characterization of Physical and Aerodynamic Properties of Walnuts. Trans. ASABE 2014, 57, 53–61. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, H.; Zeng, Y.; Tang, Y.; Zhang, Z.; Che, J. Design and Performance Evaluation of a Multi-Point Extrusion Walnut Cracking Device. Agriculture 2022, 12, 1494. [Google Scholar] [CrossRef]
- Li, J.; Shen, Y.; Zhao, Y. Test and computer simulation on the motion of agricultural materials on agitated conveying board. Trans. Chin. Soc. Agric. Mach 1998, 14, 213–216. [Google Scholar]
- Wang, J.; Liao, M.; Xia, H.; Chen, R.; Li, J.; Yang, Y. Study on the Conveying Characteristics of a Hanged Harvester Vibrating Screen for Ligusticum Chuanxiong. Processes 2024, 12, 1323. [Google Scholar] [CrossRef]
- Wang, L.; Liu, W.; Li, Y.; Yu, K. Research on double-layer jitter plates with holes in large-feeding mass cleaning system of maize grain harvester. Trans. Chin. Soc. Agric. Mach. 2022, 53, 92–102. [Google Scholar] [CrossRef]
- Wang, Y.; Liang, Z.; Liu, Z.; Niu, W.; Yi, S. Selection of parameters and experiment of one-way inclining gravity screen for 5XFZ-30.0 model gravity cleaner. Trans. Chin. Soc. Agric. Eng. 2004, 20, 115–119. [Google Scholar] [CrossRef]
- Fu, W.; Yang, L.; He, R.; Zhang, H.; Kan, Z. Analysis and improvement of oscillating plate of grain combine harvester. Shihezi Univ. Nat. Sci. 2012, 30, 249–251. [Google Scholar] [CrossRef]
- Tang, Q.; Wu, C.; Wu, D.; Mu, S.; Liang, S. Study on the performance of jitter plate of grain combine harvester based on DEM. Jiangsu Agric. Sci. 2017, 45, 208–210. [Google Scholar] [CrossRef]
- Li, H.; Li, Y.; Tang, Z. Numerical simulation of material motion on vibrating screen of air-and-screen cleaning device based on CFD-DEM. Trans. Chin. Soc. Agric. Mach. 2012, 43, 79–84. [Google Scholar] [CrossRef]
- Wang, L.; Chai, J.; Wang, H.; Wang, Y. Design and Performance of a Countersunk Screen in a Maize Cleaning Device. Biosyst. Eng. 2021, 209, 300–314. [Google Scholar] [CrossRef]
- Zhang, H.; Zhou, Z.; Qu, Z.; Li, Z.; Wang, W. Simulation and Experiment of Sieving Process of Sieving Device for Tiger Nut Harvester. Agriculture 2022, 12, 1680. [Google Scholar] [CrossRef]
- Guan, R.; Gu, J.; Li, Y.; Yang, C.; Zhang, B.; Yao, X.; Zhu, R.; Wang, Q.; Dong, W.; Huang, Y. Simulation and Experimental Study of Shell-Kernel Separation Device for Household Sunflower Based on CFD-DEM Coupling. Sci. Rep. 2025, 15, 9209. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Niu, H.; Zhang, H.; Zhang, M. Performance Evaluation and Parameter Optimization of a Walnut Shell–Kernel Winnowing Device. J. Food Process Eng. 2024, 47, e14498. [Google Scholar] [CrossRef]
- Zhang, X.; Ke, Y.; Sun, P.; Xu, Y.; Chen, C. Study on the separation particle size of ellipsoidal particle linear vibration sieve based on EDEM. Jiangsu Agric. Sci. 2018, 46, 188–191. [Google Scholar] [CrossRef]
- Liu, X.; Wang, W.; Song, S. Simulation analysis of the influencing parameters of the rice screening performance of the experimental vibrating screen based on EDEM. Cereals Oils 2025, 38, 142–148. [Google Scholar] [CrossRef]
- Gao, Y.; Song, L.; Wang, L.; Wang, H.; Li, Y. Behavior of Maize Grains on the Three-Dimensional Translational Vibrating Sieve. Powder Technol. 2022, 412, 117999. [Google Scholar] [CrossRef]
- Feng, X.; Gong, Z.; Wang, L.; Yu, Y.; Liu, T.; Song, L. Behavior of Maize Particle Penetrating a Sieve Hole Based on the Particle Centroid in an Air-Screen Cleaning Unit. Powder Technol. 2021, 385, 501–516. [Google Scholar] [CrossRef]
- Hu, G.; Chen, X.; Zhao, T.; Dong, Y.; Liu, G.; Zhou, J. Optimization of grading process of walnut shell and kernel mixture by vibrating screen based on EDEM. China Oils Fats 2024, 49, 95–100. [Google Scholar] [CrossRef]
- Jiang, Y.; Tang, Y.; Li, W.; Zeng, Y.; Li, X.; Liu, Y.; Zhang, H. Determination Method of Core Parameters for the Mechanical Classification Simulation of Thin-Skinned Walnuts. Agriculture 2022, 13, 104. [Google Scholar] [CrossRef]
- Man, X.; Li, L.; Zeng, Y.; Tang, Y.; Yang, J.; Fan, X.; Zhang, Y.; Zhang, H.; Su, G.; Wang, J. Mechanical Impact Characteristics of Hollow Shell Granule Based on Continuous Damage Theory. Powder Technol. 2023, 429, 118946. [Google Scholar] [CrossRef]
- Chen, X.; Hu, G.; Zhao, T.; Li, Z.; Zhou, J. Simulation Study on Negative Pressure Winnowing of Walnut Kernel Mixture Based on CFD-DEM Coupling. Shandong Agric. Univ. Nat. Sci. 2021, 52, 1017–1027. [Google Scholar]
- Chen, P.; Han, Y.; Jia, F.; Meng, X.; Xiao, Y.; Bai, S. DEM Simulations and Experiments Investigating the Influence of Feeding Plate Angle in a Rubber-Roll Paddy Grain Huller. Biosyst. Eng. 2021, 201, 23–41. [Google Scholar] [CrossRef]
- Cao, C.; Luo, K.; Peng, M.; Wu, Z.; Liu, G.; Li, Z. Experiment on Winnowing Mechanism and Winnowing Performance of Hickory Material. Trans. Chin. Soc. Agric. Mach. 2019, 50, 105–112. [Google Scholar] [CrossRef]
- Han, Y.; Jia, F.; Zeng, Y.; Jiang, L.; Zhang, Y.; Cao, B. Effects of Rotation Speed and Outlet Opening on Particle Flow in a Vertical Rice Mill. Powder Technol. 2016, 297, 153–164. [Google Scholar] [CrossRef]
- Han, Y.; Jia, F.; Zeng, Y.; Jiang, L.; Zhang, Y.; Cao, B. DEM Study of Particle Conveying in a Feed Screw Section of Vertical Rice Mill. Powder Technol. 2017, 311, 213–225. [Google Scholar] [CrossRef]
- Zeng, Y.; Jia, F.; Xiao, Y.; Han, Y.; Meng, X. Discrete Element Method Modelling of Impact Breakage of Ellipsoidal Agglomerate. Powder Technol. 2019, 346, 57–69. [Google Scholar] [CrossRef]
- Cao, B.; Jia, F.; Zeng, Y.; Han, Y.; Meng, X.; Xiao, Y. Effects of Rotation Speed and Rice Sieve Geometry on Turbulent Motion of Particles in a Vertical Rice Mill. Powder Technol. 2018, 325, 429–440. [Google Scholar] [CrossRef]
- Li, Z. Study on the Mechanism of Walnut Shell-Kernel Separation by Vibrating Sawtooth Sieve Type. Master’s Thesis, Tarim University, Xinjiang, China, 2024. [Google Scholar] [CrossRef]
- Han, Y.-L.; Jia, F.-G.; Tang, Y.-R.; Liu, Y.; Zhang, Q. Influence of Granular Coefficient of Rolling Friction on Accumulation Characteristics. Acta Phys. Sin. 2014, 63, 174501. [Google Scholar] [CrossRef]
- Coetzee, C.J.; Els, D.N.J. Calibration of Discrete Element Parameters and the Modelling of Silo Discharge and Bucket Filling. Comput. Electron. Agric. 2009, 65, 198–212. [Google Scholar] [CrossRef]
- Wei, H.; Tang, X.; Ge, Y.; Li, M.; Saxén, H.; Yu, Y. Numerical and Experimental Studies of the Effect of Iron Ore Particle Shape on Repose Angle and Porosity of a Heap. Powder Technol. 2019, 353, 526–534. [Google Scholar] [CrossRef]
- Jia, F.; Han, Y.; Liu, Y.; Cao, Y.; Shi, Y.; Yao, L.; Wang, H. Simulation prediction method of repose angle for rice particle materials. Trans. Chin. Soc. Agric. Eng. 2014, 30, 254–260. [Google Scholar] [CrossRef]
- Derakhshani, S.M.; Schott, D.L.; Lodewijks, G. Micro–Macro Properties of Quartz Sand: Experimental Investigation and DEM Simulation. Powder Technol. 2015, 269, 127–138. [Google Scholar] [CrossRef]
- Xia, R.; Li, B.; Wang, X.; Li, T.; Yang, Z. Measurement and Calibration of the Discrete Element Parameters of Wet Bulk Coal. Measurement 2019, 142, 84–95. [Google Scholar] [CrossRef]
- Zhao, L.; Zhou, H.; Xu, L.; Song, S.; Zhang, C.; Yu, Q. Parameter Calibration of Coconut Bran Substrate Simulation Model Based on Discrete Element and Response Surface Methodology. Powder Technol. 2022, 395, 183–194. [Google Scholar] [CrossRef]
- Chen, P.; Han, Y.; Jia, F.; Zhao, D.; Meng, X.; Li, A.; Chu, Y.; Zhao, H. Investigation of the Mechanism of Aerodynamic Separation of Rice Husks from Brown Rice Following Paddy Hulling by Coupled CFD-DEM. Biosyst. Eng. 2022, 218, 200–215. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, W.; Gao, J.; Yao, Y.; Sun, C. Optimizing the Rap Sieving Efficiency on Linear Vibrating Sieve by Using Dem Simulation. SSRN Electron. J. 2021, 333, 127442. [Google Scholar] [CrossRef]
- Chen, P.; Jia, F.; Han, Y.; Meng, X.; Li, A.; Chu, Y.; Zhao, H. Study on the Segregation of Brown Rice and Rice Husks Mixture in Inclined Chute Flow. Powder Technol. 2022, 404, 117393. [Google Scholar] [CrossRef]

















| Categories | Hovering Speed Range (m/s) | ||
|---|---|---|---|
| 1/2 | 1/4 | 1/8 | |
| Walnut shell | 11.01~14.24 | 9.48~11.1 | 7.91~10.07 |
| Walnut kernel | 15.74~19.93 | 15.22~18.28 | 13.09~15.78 |
| Materials | Poisson’s Ratio | Shear Modulus/Pa | Density/(kg·m−3) |
|---|---|---|---|
| Walnut shell | 0.3 | 1.7 × 106 | 750 |
| Walnut kernels | 0.3 | 1 × 106 | 980 |
| Steel | 0.3 | 7 × 1010 | 7800 |
| Collision Characteristics | Recovery Coefficient | Static Friction Coefficient | Dynamic Friction Coefficient |
|---|---|---|---|
| Shell–Shell | 0.2 | 0.7 | 0.01 |
| Shell–Kernel | 0.2 | 0.8 | 0.01 |
| Kernel–Kernel | 0.3 | 0.8 | 0.01 |
| Shell–Steel | 0.55 | 0.42 | 0.05 |
| Kernel–Steel | 0.75 | 0.32 | 0.15 |
| Origin of Variance | Sum of Squares | df | Mean Squares | F Value | p Value |
|---|---|---|---|---|---|
| Different-groups | 5874.5636 | 1 | 5874.5636 | 0.7278 | 0.4048 |
| Interior-group | 145,284.17 | 18 | 8071.3426 | ||
| Total | 151,158.73 | 19 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Wang, C.; Zong, W.; Zhang, H.; Li, Z.; Gai, G.; Chen, P.; Ma, J. Study on the Separation Mechanism of Walnut Shell Kernels on Different Inclined Vibrating Screens. AgriEngineering 2025, 7, 396. https://doi.org/10.3390/agriengineering7110396
Zhang Y, Wang C, Zong W, Zhang H, Li Z, Gai G, Chen P, Ma J. Study on the Separation Mechanism of Walnut Shell Kernels on Different Inclined Vibrating Screens. AgriEngineering. 2025; 7(11):396. https://doi.org/10.3390/agriengineering7110396
Chicago/Turabian StyleZhang, Yongcheng, Changqi Wang, Wangyuan Zong, Hong Zhang, Zhanbiao Li, Guangxin Gai, Peiyu Chen, and Jiale Ma. 2025. "Study on the Separation Mechanism of Walnut Shell Kernels on Different Inclined Vibrating Screens" AgriEngineering 7, no. 11: 396. https://doi.org/10.3390/agriengineering7110396
APA StyleZhang, Y., Wang, C., Zong, W., Zhang, H., Li, Z., Gai, G., Chen, P., & Ma, J. (2025). Study on the Separation Mechanism of Walnut Shell Kernels on Different Inclined Vibrating Screens. AgriEngineering, 7(11), 396. https://doi.org/10.3390/agriengineering7110396
