Previous Issue
Volume 6, March
 
 

Acoustics, Volume 6, Issue 2 (June 2024) – 5 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
12 pages, 2865 KiB  
Article
Modelling of Propagation Characteristics of Acoustic Pulse from Partial Discharge in Polymeric Insulating Materials
by Abdul Samad, Wah Hoon Siew, Martin J. Given, Igor V. Timoshkin and John Liggat
Acoustics 2024, 6(2), 374-385; https://doi.org/10.3390/acoustics6020020 (registering DOI) - 26 Apr 2024
Viewed by 98
Abstract
The partial discharge (PD) event in high-voltage insulation releases energy, exerts mechanical pressure, and generates elastic waves. Detecting and locating these PD events through short-duration acoustic pulses is well established, particularly in gas-insulated systems and oil-insulated transformers. However, its full potential remains untapped [...] Read more.
The partial discharge (PD) event in high-voltage insulation releases energy, exerts mechanical pressure, and generates elastic waves. Detecting and locating these PD events through short-duration acoustic pulses is well established, particularly in gas-insulated systems and oil-insulated transformers. However, its full potential remains untapped in solid insulation systems, where the propagation capability of the acoustic pulse and the acoustic reflections pose fundamental challenges to the acoustic emission (AE) detection technique. This study investigates the influence of reflections and multiple paths on the propagating acoustic pulse in polymeric insulating materials using a finite element method (FEM) in COMSOL. It was observed that the reflections from the boundary influence the propagating pulse’s shape, peak magnitude, and arrival time. An analytical MATLAB model further quantifies the impact of multiple propagation paths on the shape, magnitude, and arrival time of the pulse travelling in a cylinder. Additionally, a Perfect Matched Layer (PML) was implemented in the COMSOL model to eliminate the reflections from the boundary, and it revealed that the acoustic pulse magnitude decreases with distance following the inverse square law. In essence, the models aid in measuring how reflections contribute to the observed signals, facilitating the precise identification of the source of the PD event in the tested system. Full article
Show Figures

Figure 1

12 pages, 355 KiB  
Article
Tunnel Effect for Ultrasonic Waves in Tapered Waveguides
by Massimo Germano
Acoustics 2024, 6(2), 362-373; https://doi.org/10.3390/acoustics6020019 (registering DOI) - 24 Apr 2024
Viewed by 172
Abstract
Traversal time in the tunneling effect for ultrasonic waves in tapered waveguides is derived considering its analogy with quantum and electromagnetic wave tunneling. If, as traversal time, the so-called phase time is considered, the ultrasonic wave packet shows the equivalent in acoustics of [...] Read more.
Traversal time in the tunneling effect for ultrasonic waves in tapered waveguides is derived considering its analogy with quantum and electromagnetic wave tunneling. If, as traversal time, the so-called phase time is considered, the ultrasonic wave packet shows the equivalent in acoustics of superluminality, i.e., the derived velocity, crosses the limit of bulk transverse ultrasonic waves in the medium of the waveguide that is the equivalent of c in the quantum and electromagnetic cases. The graphs clearly illustrating this so-called Hartman effect are obtained confirming the experimental results in the three different fields. Full article
Show Figures

Figure 1

16 pages, 1963 KiB  
Article
A Two-Dimensional Liquid Sloshing Analysis in a Partially Filled Complicated-Shape Tank by the Schwarz–Christoffel Transformation
by Jing Lü, Xiaolong Zhu and Yang Yu
Acoustics 2024, 6(2), 346-361; https://doi.org/10.3390/acoustics6020018 - 19 Apr 2024
Viewed by 318
Abstract
The nonlinear sloshing of an incompressible fluid with irrotational flow in a complicated-shape tank due to horizontal excitation is studied with a semi-analytical method proposed in this study. In this method, the velocity potential function of a liquid in a complicated-shape tank is [...] Read more.
The nonlinear sloshing of an incompressible fluid with irrotational flow in a complicated-shape tank due to horizontal excitation is studied with a semi-analytical method proposed in this study. In this method, the velocity potential function of a liquid in a complicated-shape tank is estimated by using an approximate analytical transformation function from a complicated-shape region to a rectangular region. This function is obtained through Schwarz–Christoffel mapping and polynomial fitting. Nonlinear dynamic equations for the fluid–structure coupled system are developed based on the Hamilton–Ostrogradskiy principle. Nonlinear kinematic equations for the fluid–structure coupled system are derived based on the relationship between the liquid velocity and the free-surface equation. The Galerkin method is used to convert partial differential equations into ordinary differential equations. When tank movement is given, nonlinear models for the coupled system can be reduced to simple ones for liquid sloshing. Natural frequencies for the coupled system and liquid sloshing are analyzed, and the semi-analytical results agree with the numerical ones calculated with the software DampSlosh. Hydrodynamic forces and moments are also analyzed, and the semi-analytical results agree well with the numerical ones calculated with the Flow3D v10.1.1. Full article
Show Figures

Figure 1

15 pages, 3723 KiB  
Article
Curvature Correction for Crack Depth Measurement Using Ultrasonic Pulse Velocity
by Dong Liu, Mengli Wu and Dimitri Donskoy
Acoustics 2024, 6(2), 331-345; https://doi.org/10.3390/acoustics6020017 - 27 Mar 2024
Viewed by 821
Abstract
This study investigates the application of Ultrasonic Pulse Velocity (UPV) for crack depth estimation in cylindrical structures, focusing on two approaches: reference measurement and dual measurement. It addresses the challenge of applying UPV to curved surfaces, a scenario less studied than that of [...] Read more.
This study investigates the application of Ultrasonic Pulse Velocity (UPV) for crack depth estimation in cylindrical structures, focusing on two approaches: reference measurement and dual measurement. It addresses the challenge of applying UPV to curved surfaces, a scenario less studied than that of flat surfaces. The paper details the modification of UPV methodologies to account for curvature, presenting analytic solutions and numerical validations for both approaches. The findings reveal that curvature-adjusted equations yield accurate crack depth estimations, enhancing the reliability of UPV in diverse structural contexts. The study contributes to safer and more effective structural health monitoring, particularly in cylindrical infrastructures like columns and foundations. Full article
Show Figures

Figure 1

33 pages, 9289 KiB  
Review
Research Progress on Thin-Walled Sound Insulation Metamaterial Structures
by Yumei Zhang, Jie Zhang, Ye Li, Dan Yao, Yue Zhao, Yi Ai, Weijun Pan and Jiang Li
Acoustics 2024, 6(2), 298-330; https://doi.org/10.3390/acoustics6020016 - 26 Mar 2024
Viewed by 686
Abstract
Acoustic metamaterials (AMs) composed of periodic artificial structures have extraordinary sound wave manipulation capabilities compared with traditional acoustic materials, and they have attracted widespread research attention. The sound insulation performance of thin-walled structures commonly used in engineering applications with restricted space, for example, [...] Read more.
Acoustic metamaterials (AMs) composed of periodic artificial structures have extraordinary sound wave manipulation capabilities compared with traditional acoustic materials, and they have attracted widespread research attention. The sound insulation performance of thin-walled structures commonly used in engineering applications with restricted space, for example, vehicles’ body structures, and the latest studies on the sound insulation of thin-walled metamaterial structures, are comprehensively discussed in this paper. First, the definition and math law of sound insulation are introduced, alongside the primary methods of sound insulation testing of specimens. Secondly, the main sound insulation acoustic metamaterial structures are summarized and classified, including membrane-type, plate-type, and smart-material-type sound insulation metamaterials, boundaries, and temperature effects, as well as the sound insulation research on composite structures combined with metamaterial structures. Finally, the research status, challenges, and trends of sound insulation metamaterial structures are summarized. It was found that combining the advantages of metamaterial and various composite panel structures with optimization methods considering lightweight and proper wide frequency band single evaluator has the potential to improve the sound insulation performance of composite metamaterials in the full frequency range. Relative review results provide a comprehensive reference for the sound insulation metamaterial design and application. Full article
(This article belongs to the Special Issue Acoustic Materials)
Show Figures

Figure 1

Previous Issue
Back to TopTop