The Effect of an Emotionalizing Sound Design on the Driver’s Choice of Headway in a Driving Simulator
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Acoustic Stimulus
2.3. Integration of the Sound into the Vehicle Cabin
2.4. Participants
2.5. Methods
- In what situation did you notice this change in noise?
- How did you feel when the sound changed?
- Scenario 1/2:
- Task:
- ○
- You are on your way to Knoblach. You have an important appointment there. You are already running a little late, but you can still make it on time.
- ○
- Drive as you would in real life.
- Information:
- Scenario: Motorway journey section 1 or 2
- ○
- Vehicle: Electric vehicle with automatic transmission and an artificially generated vehicle interior noise (Active Sound Design)
- No sudden damage or technical problems can occur to the vehicle during the journey.
- THW < 4 s: This headway range is chosen as a rather wide range. It is close enough that the vehicle in front ahead is clearly visible and considerations about the targeted headway should start to take place in the participant. This range could also be indicative of whether the emotionalizing stimulus has some sort of lasting effect above the direct effect while the stimulus is active (THW < 1.8 s)
- THW < 1.8 s: When undershooting 1.8 s, the normal active sound design starts to change into an emotionalizing sound design. This value was chosen because 1.8 s THW is suggested in Germany as a safe THW to drive in. This THW range distinguishes the drive with the emotionalizing stimulus and without in this experiment.
- THW < 1.35 s: At 1.35 s, the emotionalizing sound design changed to the diminished chord, and the metallic hissing is at maximum level, but the amplitude modulation causing the impulsiveness and fluctuation is still not present. This is the range in which the changes in sound are very much audible and should show an effect of the sound design if there is one.
- THW < 0.9 s: In this THW range, the emotionalizing sound design is at its maximum level in regards to inharmoniousness, impulsiveness, and fluctuation strength. Further, driving in this THW range is sanctioned in Germany as it is deemed unsafe to do so.
3. Results
3.1. Descriptive Statistics Based on the Time Headway in the Control Group Setup
3.2. Statistical Analysis of the Effect on the Time Headway in the Control Group Setup
3.3. Descriptive Statistics Based on the Time Headway in the Within-Participants Setup
3.4. Statistical Analysis of the Effect of the Stimulus on the Time Headway in the Within-Participant Setup
3.5. Affective Evaluation of the Stimulus
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Evans, L.; Schwing, R.C. (Eds.) Human Behavior and Traffic Safety; Springer: Boston, MA, USA, 1985; ISBN 978-1-4612-9280-7. [Google Scholar]
- Montesquieu, C.L.S.; de Roger, J. Verkehrsunfälle Deutschland; Statistisches Bundesamt (Destatis): Wiesbaden, Germany, 2019. [Google Scholar]
- Kühn, M.; Hannawald, L. Verkehrssicherheit und Potenziale von Fahrerassistenzsystemen. In Handbuch Fahrerassistenzsysteme: Grundlagen, Komponenten und Systeme für aktive Sicherheit und Komfort; Winner, H., Hakuli, S., Lotz, F., Singer, C., Eds.; Springer Fachmedien: Wiesbaden, Germany, 2015; pp. 55–70. ISBN 978-3-658-05733-6. [Google Scholar]
- Breyer, G. A Review of the Rules and Practices Concerning the Safe Distance between Two Vehicles on Roads by Members of CEDR’s TG Road Safety; CEDR Report: London, UK, 2010. [Google Scholar]
- Bundeseinheitlicher Tatbestandskatalog KBA-Langfassung, gebunden; Kraftfahrt-Bundesamt, V., Ed., 15. Auflage; V.P.A: Massing im Rottal, 2023, ISBN 3-946671-48-9. Available online: https://search.worldcat.org/title/1390743119 (accessed on 7 June 2024).
- Jentsch, M.; Lindner, P.; Spanner-Ulmer, B.; Wanielik, G.; Krems, J. Nutzerakzeptanz von Systemausprägungen zur Aktiven Gefahrenbremsung. GfA (Hrsg.): Mensch, Technik, Organisation-Vernetzung im Produktentstehungs-und-herstellungsprozess, Tagungsband GfA Frühjahrskongress Chemnitz, GfA-Press, Dortmund: 2011.
- Kroher, T. Fahrerassistenzsysteme in der Übersicht: So Können sie Autofahrer Unterstützen; ADAC: Munich, Germany, 2022. [Google Scholar]
- Birbaumer, N.; Schmidt, R.F. Biologische Psychologie, 6th ed.; Springer: Berlin/Heidelberg, Germany, 2006; ISBN-10 3-540-25460-9. [Google Scholar]
- Koelsch, S.; Skouras, S.; Fritz, T.; Herrera, P.; Bonhage, C.; Küssner, M.B.; Jacobs, A.M. The roles of superficial amygdala and auditory cortex in music-evoked fear and joy. Neuroimage 2013, 81, 49–60. [Google Scholar] [CrossRef] [PubMed]
- Alt, N.W.; Jochum, S. Sound Design under the Aspects of Musical Harmonic Theory; SAE Technical Papers: Warrendale, PA, USA, 2003. [Google Scholar]
- Horswill, M.S.; Plooy, A.M. Auditory feedback influences perceived driving speeds. Perception 2008, 37, 1037–1043. [Google Scholar] [CrossRef] [PubMed]
- Hellier, E.; Naweed, A.; Walker, G.; Husband, P.; Edworthy, J. The influence of auditory feedback on speed choice, violations and comfort in a driving simulation game. Transp. Res. Part F Traffic Psychol. Behav. 2011, 14, 591–599. [Google Scholar] [CrossRef]
- Wang, E.Y.; Wang, E.M. In-car sound analysis and driving speed estimation using sounds with different frequencies as cues. Int. J. Ind. Ergon. 2012, 42, 34–40. [Google Scholar] [CrossRef]
- Dekker, C. The Impact of Movie Soundtracks on the Estimation of Driving Speeds. Graduation Thesis, Leiden University, Leiden, The Netherlands, 2015. Available online: https://coendekker.nl/media/pdf/Coen-Dekker-The-impact-of-movie-soundtracks-on-the-estimation-of-driving-speeds-Version-3-1.pdf (accessed on 7 June 2024).
- Brodsky, W. The effects of music tempo on simulated driving performance and vehicular control. Transp. Res. Part F Traffic Psychol. Behav. 2001, 4, 219–241. [Google Scholar] [CrossRef]
- Kleinginna, P.R.; Kleinginna, A.M. A categorized list of emotion definitions, with suggestions for a consensual definition. Motiv. Emot. 1981, 5, 345–379. [Google Scholar] [CrossRef]
- Russell, J.A. A circumplex model of affect. J. Personal. Soc. Psychol. 1980, 39, 1161–1178. [Google Scholar] [CrossRef]
- Russell, J.A.; Mehrabian, A. Approach-Avoidance and Affiliation as Functions of the Emotion-Eliciting Quality of an Environment. Environ. Behav. 1978, 10, 355–387. [Google Scholar] [CrossRef]
- Costa, M.; Ricci Bitti, P.E.; Bonfiglioli, L. Psychological Connotations of Harmonic Musical Intervals. Psychol. Music. 2000, 28, 4–22. [Google Scholar] [CrossRef]
- Pallesen, K.J.; Brattico, E.; Bailey, C.; Korvenoja, A.; Koivisto, J.; Gjedde, A.; Carlson, S. Emotion processing of major, minor, and dissonant chords: A functional magnetic resonance imaging study. Ann. N. Y. Acad. Sci. 2005, 1060, 450–453. [Google Scholar] [CrossRef]
- Coutinho, E.; Cangelosi, A. Musical emotions: Predicting second-by-second subjective feelings of emotion from low-level psychoacoustic features and physiological measurements. Emotion 2011, 11, 921–937. [Google Scholar] [CrossRef] [PubMed]
- Coutinho, E.; Dibben, N. Psychoacoustic cues to emotion in speech prosody and music. Cogn. Emot. 2013, 27, 658–684. [Google Scholar] [CrossRef] [PubMed]
- Västfjäll, D. Emotion induction through music: A review of the musical mood induction procedure. Music. Sci. 2001, 5, 173–211. [Google Scholar] [CrossRef]
- Chang, K.-J.; Park, D.C. Technology of an Emotional Engine Sound Designing for Active Sound Control Using Order Balance and Musical Instrument Sound. In SAE Technical Paper Series. In Proceedings of the 9th International Styrian Noise, Vibration & Harshness Congress: The European Automotive Noise Conference, Graz, Austria, 22–24 June 2016; SAE International 400 Commonwealth Drive: Warrendale, PA, USA, 2016. [Google Scholar]
- Gwak, D.Y.; Yoon, K.; Seong, Y.; Lee, S. Subjective evaluation of additive sound designed to reinforce acoustic feedback of electric vehicle. In INTER-NOISE and NOISE-CON Congress and Conference Proceedings; Institute of Noise Control Engineering: Reston, VA, USA, 2014; Volume 249, pp. 2157–2161. [Google Scholar]
- Roidl, E.; Frehse, B.; Höger, R. Emotional states of drivers and the impact on speed, acceleration and traffic violations—A simulator study. Accid. Anal. Prev. 2014, 70, 282–292. [Google Scholar] [CrossRef] [PubMed]
- Serrano, J.; Di Stasi, L.L.; Megías, A.; Catena, A. Affective-sound effects on driving behaviour. Transport 2013, 29, 100–106. [Google Scholar] [CrossRef]
- Megías, A.; Di Stasi, L.L.; Maldonado, A.; Catena, A.; Cándido, A. Emotion-laden stimuli influence our reactions to traffic lights. Transp. Res. Part F Traffic Psychol. Behav. 2014, 22, 96–103. [Google Scholar] [CrossRef]
- Petersen, M.; Etri, M.; Behrendt, M.; Albers, A.; Spekker, M.; Lefringhausen, T.J. Suggestive Sound Design based on disharmonization—Developing an Active Sound Design to improve traffic safety. In INTER-NOISE and NOISE-CON Congress and Conference Proceedings; Institute of Noise Control Engineering: Washington, DC, USA, 2021; Volume 263, pp. 1561–1573. [Google Scholar] [CrossRef]
- Petersen, M.; Zaimovic, M.; Albers, A. Evaluating emotionalizing effects of active sound designs. In INTER-NOISE and NOISE-CON Congress and Conference Proceedings; Institute of Noise Control Engineering: Chiba, Japan, 2023; Volume 268, pp. 4689–4700. [Google Scholar] [CrossRef]
- Petersen, M.; Yüksel, D.; Albers, A. Effect of Emotionalizing Sounds on the Estimation and Evaluation of Displayed Safety Distances. Acoustics 2024, 6, 386–407. [Google Scholar] [CrossRef]
- Ehrhardt, S.; Roß, R.; Deml, B. Implicit communication on the motorway slip road: A driving simulator study. In Proceedings of the Human Factors and Ergonomics Society Europe Chapter Proceedings Conference, Liverpool, UK, 26–28 April 2023. [Google Scholar]
- WIVW—Würzburger Institut für Verkehrssicherheit. SILAB Driving Simulator. Available online: https://wivw.de/en/SILAB (accessed on 6 May 2024).
- Petersen, M.; Düser, T.; Albers, A. Implementation of a Validation Environment for an Emotionalizing Sound Design in a Driving Simulator. Symp. Driv. Simul. 2023, 9, 7–8. [Google Scholar] [CrossRef]
- Kaptein, N.A.; Theeuwes, J.; van der Horst, R. Driving Simulator Validity: Some Considerations. Transp. Res. Rec. 1996, 1550, 30–36. [Google Scholar] [CrossRef]
- Underwood, G.; Crundall, D.; Chapman, P. Driving simulator validation with hazard perception. Transp. Res. Part F Traffic Psychol. Behav. 2011, 14, 435–446. [Google Scholar] [CrossRef]
- Zhang, Y.; Guo, Z.; Sun, Z. Driving Simulator Validity of Driving Behavior in Work Zones. J. Adv. Transp. 2020, 2020, 1–10. [Google Scholar] [CrossRef]
- Baumberger, B.; Flückiger, M.; Paquette, M.; Bergeron, J.; Delorme, A. Perception of relative distance in a driving simulator 1,2. Jpn. Psychol. Res. 2005, 47, 230–237. [Google Scholar] [CrossRef]
- Mishra, P.; Singh, U.; Pandey, C.M.; Mishra, P.; Pandey, G. Application of student’s t-test, analysis of variance, and covariance. Ann. Card. Anaesth. 2019, 22, 407–411. [Google Scholar] [CrossRef] [PubMed]
- Fritz, C.O.; Morris, P.E.; Richler, J.J. Effect size estimates: Current use, calculations, and interpretation. J. Exp. Psychol. Gen. 2012, 141, 2–18. [Google Scholar] [CrossRef] [PubMed]
Duration of Driving in THW Range (s) | Mean | Median | Standard Deviation | n | |
---|---|---|---|---|---|
THW < 4 s | Without Stimulus | 314.6 | 329.1 | 49.8 | 22 |
With Stimulus | 319.8 | 327.9 | 28.3 | 21 | |
THW < 1.8 s | Without Stimulus | 173.2 | 185.2 | 68.5 | 22 |
With Stimulus | 174.0 | 180.4 | 51.8 | 21 | |
THW < 1.35 s | Without Stimulus | 127.0 | 115.0 | 68.9 | 22 |
With Stimulus | 110.5 | 115.6 | 57.4 | 21 | |
THW < 0.9 s | Without Stimulus | 64.6 | 42.9 | 57.3 | 22 |
With Stimulus | 40.9 | 26.9 | 35.1 | 21 |
Mean THW in THW Range (s) | Mean | Median | Standard Deviation | n | |
---|---|---|---|---|---|
THW < 4 s | Without Stimulus | 1.83 | 1.79 | 0.37 | 22 |
With Stimulus | 1.89 | 1.87 | 0.25 | 21 | |
THW < 1.8 s | Without Stimulus | 1.11 | 1.15 | 0.19 | 22 |
With Stimulus | 1.22 | 1.19 | 0.15 | 21 | |
THW < 1.35 s | Without Stimulus | 0.92 | 0.92 | 0.13 | 22 |
With Stimulus | 1.00 | 1.00 | 0.11 | 21 | |
THW < 0.9 s | Without Stimulus | 0.68 | 0.70 | 0.09 | 22 |
With Stimulus | 0.67 | 0.68 | 0.09 | 21 |
Mann–Whitney U-Test | Comparison: Duration Driving in THW Range of First Drives of All Participants | |||||||
---|---|---|---|---|---|---|---|---|
THW Range | Mean Difference | Effect Size | Z-Value | p | n per Stimulus | Standard Deviation | Standard Error | Conf. Interval (95%) Upper |
THW < 4 s | 5.20 | 0.10 | −0.68 | 0.50 | 22/21 | 40.77 | 12.44 | −0.38 |
THW < 1.8 s | 0.82 | 0.13 | −0.86 | 0.39 | 22/21 | 60.92 | 18.59 | −0.49 |
THW < 1.35 s | −16.46 | 0.21 | −1.35 | 0.18 | 22/21 | 63.55 | 19.39 | −0.76 |
THW < 0.9 s | −23.68 | 0.25 | −1.66 | 0.10 | 22/21 | 47.82 | 14.59 | −1.00 |
Mann–Whitney U-Test | Comparison: Mean THWs in THW Range of First Drives of All Participants | |||||||
---|---|---|---|---|---|---|---|---|
THW Range | Mean Difference | Effect Size | Z-Value | p | n per Stimulus | Standard Deviation | Standard Error | Conf. Interval (95%) Lower |
THW < 4 s | 0.06 | 0.19 | −1.22 | 0.22 | 22/21 | 0.32 | 0.10 | 0.69 |
THW < 1.8 s | 0.10 | 0.30 | −1.95 | 0.05 * | 22/21 | 0.17 | 0.05 | 1.11 |
THW < 1.35 s | 0.08 | 0.29 | −1.91 | 0.06 | 22/21 | 0.12 | 0.04 | 1.15 |
THW < 0.9 s | −0.01 | 0.05 | −0.36 | 0.72 | 22/21 | 0.09 | 0.03 | 0.45 |
Duration of Driving in THW Range (s) | Mean | Median | Standard Deviation | n | |
---|---|---|---|---|---|
THW < 4 s | Without Stimulus | 323.6 | 333.7 | 38.6 | 43 |
With Stimulus | 309.9 | 322.6 | 42.6 | 43 | |
THW < 1.8 s | Without Stimulus | 175.9 | 194.1 | 64.0 | 43 |
With Stimulus | 157.1 | 171.1 | 65.5 | 43 | |
THW < 1.35 s | Without Stimulus | 122.7 | 113.0 | 64.0 | 43 |
With Stimulus | 97.8 | 95.9 | 65.2 | 43 | |
THW < 0.9 s | Without Stimulus | 64.6 | 42.9 | 57.3 | 43 |
With Stimulus | 40.9 | 26.9 | 35.1 | 43 |
Mean THW in THW Range (s) | Mean | Median | Standard Deviation | n | |
---|---|---|---|---|---|
THW < 4 s | Without Stimulus | 1.86 | 1.83 | 0.39 | 43 |
With Stimulus | 1.95 | 1.91 | 0.41 | 43 | |
THW < 1.8 s | Without Stimulus | 1.16 | 1.17 | 0.19 | 43 |
With Stimulus | 1.24 | 1.23 | 0.19 | 43 | |
THW < 1.35 s | Without Stimulus | 0.96 | 0.96 | 0.14 | 43 |
With Stimulus | 1.02 | 1.03 | 0.13 | 43 | |
THW < 0.9 s | Without Stimulus | 0.63 | 0.68 | 0.14 | 40 |
With Stimulus | 0.66 | 0.67 | 0.10 | 40 |
Wilcoxon-Signed-Rank-Test | Comparison: Duration Driving in THW Range of Both Drives within Participants | |||||||
---|---|---|---|---|---|---|---|---|
THW Range | Mean Difference | Effect Size | Z-Value | p | n per Stimulus | Standard Deviation | Standard Error | Conf. Interval (95%) Upper |
THW < 4 s | −13.70 | 0.25 | −2.32 | 0.02 * | 43/43 | 40.63 | 8.76 | −0.69 |
THW < 1.8 s | −18.77 | 0.26 | −2.42 | 0.02 * | 43/43 | 64.76 | 13.97 | −0.65 |
THW < 1.35 s | −24.90 | 0.34 | −3.19 | 0.001 ** | 43/43 | 64.59 | 13.93 | −0.74 |
THW < 0.9 s | −16.52 | 0.45 | −4.17 | 0.0001 *** | 43/43 | 47.05 | 10.15 | −0.71 |
Wilcoxon-Signed-Rank-Test | Comparison: Mean THWs in THW Range of Both Drives within Participants | |||||||
---|---|---|---|---|---|---|---|---|
THW Range | Mean Difference | Effect Size | Z-Value | p | n per Stimulus | Standard Deviation | Standard Error | Conf. Interval (95%) Lower |
THW < 4 s | 0.09 | 0.26 | −2.41 | 0.02 * | 43/43 | 0.40 | 0.09 | 0.58 |
THW < 1.8 s | 0.07 | 0.35 | −3.24 | 0.001 ** | 43/43 | 0.19 | 0.04 | 0.75 |
THW < 1.35 s | 0.05 | 0.35 | −3.22 | 0.001 ** | 43/43 | 0.14 | 0.03 | 0.74 |
THW < 0.9 s | 0.04 | 0.19 | −1.70 | 0.09 | 40/40 | 0.12 | 0.03 | 0.67 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petersen, M.; Deml, B.; Albers, A. The Effect of an Emotionalizing Sound Design on the Driver’s Choice of Headway in a Driving Simulator. Acoustics 2024, 6, 541-567. https://doi.org/10.3390/acoustics6020029
Petersen M, Deml B, Albers A. The Effect of an Emotionalizing Sound Design on the Driver’s Choice of Headway in a Driving Simulator. Acoustics. 2024; 6(2):541-567. https://doi.org/10.3390/acoustics6020029
Chicago/Turabian StylePetersen, Manuel, Barbara Deml, and Albert Albers. 2024. "The Effect of an Emotionalizing Sound Design on the Driver’s Choice of Headway in a Driving Simulator" Acoustics 6, no. 2: 541-567. https://doi.org/10.3390/acoustics6020029
APA StylePetersen, M., Deml, B., & Albers, A. (2024). The Effect of an Emotionalizing Sound Design on the Driver’s Choice of Headway in a Driving Simulator. Acoustics, 6(2), 541-567. https://doi.org/10.3390/acoustics6020029