Acoustic Properties of Surfaces Covered by Multipole Resonators
Abstract
:1. Introduction
2. Materials and Methods
2.1. Linear Multipole
2.1.1. Monopole
2.1.2. Dipole
2.1.3. Quadrupole
2.1.4. Multipole
2.2. Array of Multipoles
2.2.1. Reflection Coefficient
2.2.2. Equivalent Boundary Condition
3. Results
3.1. Reflection Coefficient
3.2. Diffuse Field Absorption
3.3. Optimal Impedance
4. Discussion
4.1. Helmholtz Resonators
4.2. Membrane Resonators
5. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Auriault, J.-L.; Boutin, C.; Geindreau, C. Homogenization of Coupled Phenomena in Heterogenous Media; ISTE Ltd.: London, UK; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2009. [Google Scholar]
- Li, J.; Chan, C.T. Double-negative acoustic metamaterial. Phys. Rev. E 2004, 70, 055602. [Google Scholar] [CrossRef] [PubMed]
- Burov, V.A.; Dmitriev, K.V.; Sergeev, S.N. Acoustic double-negative media. Acoust. Phys. 2009, 55, 298–310. [Google Scholar] [CrossRef]
- Foldy, L.L. Multiple scattering of waves. Phys. Rev. 1945, 67, 107–119. [Google Scholar] [CrossRef]
- Mironov, M. The dipole resonator and dipole waveguide insulator in dense liquid medium. Acoustics 2022, 4, 469–478. [Google Scholar] [CrossRef]
- Fedotovskii, V.C. A porous medium as an acoustic metamaterial with negative inertial and elastic properties. Acoust. Phys. 2018, 64, 548–554. [Google Scholar] [CrossRef]
- Golub, M.V.; Moroz, I.A.; Wang, Y.; Khanazaryan, A.D.; Kanishchev, K.K.; Okoneshnikova, E.A.; Shpak, A.N.; Mareev, S.A.; Zhang, C. Design and manufacturing of the multi-layered metamaterial plate with interfacial crack-like voids and experimental-theoretical study of the guided wave propagation. Acoustics 2023, 5, 122–135. [Google Scholar] [CrossRef]
- Ma, G.; Sheng, P. Acoustic metamaterials: From local resonances to broad horizons. Sci. Adv. 2016, 2, 1501595. [Google Scholar] [CrossRef] [PubMed]
- Du, Y.; Wu, W.; Chen, W.; Lin, Y.; Ghi, Q. Control the structure to optimize the performance of sound absorption of acoustic metamaterial: A review. AIP Adv. 2021, 11, 060701. [Google Scholar] [CrossRef]
- Schwan, L.; Umnova, O.; Boutin, C. Sound absorption and reflection from a resonant metasurface: Homogenisation model with experimental validation. Wave Motion 2017, 72, 154–172. [Google Scholar] [CrossRef]
- Wang, X.; Dong, R.; Li, Y.; Jing, Y. Non-local and non-Hermitian acoustic metasurfaces. Rep. Prog. Phys. 2023, 86, 116501. [Google Scholar] [CrossRef]
- Kanev, N.G.; Mironov, M.A. Dipole resonance scatterer of sound. Acoust. Phys. 2003, 49, 312–315. [Google Scholar] [CrossRef]
- Kanev, N. Resonant metasurfaces with a tangential impedance. Acoustics 2022, 4, 903–914. [Google Scholar] [CrossRef]
- Dauchez, N.; Li, K.; Nennig, B. On the use of structured poroelastic materials for noise control at low frequency. In Proceedings of the Forum Acusticum, Turin, Italy, 11–15 September 2023. [Google Scholar] [CrossRef]
- Sabat, R.; Pennec, Y.; Lévêque, G.; Torrent, D.; Ding, C.; Djafari-Rouhani, B. Single and coupled Helmholtz resonators for low frequency sound manipulation. J. Appl. Phys. 2022, 132, 064505. [Google Scholar] [CrossRef]
- Melnikov, A.; Chiang, Y.K.; Quan, L.; Oberst, S.; Alù, A.; Marburg, S.; Powell, D. Acoustic meta-atom with experimentally verified maximum Willis coupling. Nat. Commun. 2019, 10, 3148. [Google Scholar] [CrossRef] [PubMed]
- Lapin, A.D. Monopole-dipole type resonator in a narrow pipe. Acoust. Phys. 2003, 49, 731–732. [Google Scholar] [CrossRef]
- Kanev, N.G.; Mironov, M.A. A Monopole–dipole resonance absorber in a narrow waveguide. Acoust. Phys. 2005, 51, 89–94. [Google Scholar] [CrossRef]
- Lapin, A.D.; Mironov, M.A. Sound absorption by a planar array of monopole-dipole scatterers. Acoust. Phys. 2006, 52, 425–428. [Google Scholar] [CrossRef]
- Lapin, A.D. Sound absorption by monopole-dipole resonators in a multimode waveguide. Acoust. Phys. 2005, 51, 362–364. [Google Scholar] [CrossRef]
- Kanev, N.G. Tangential impedance. Acoust. Phys. 2023, 69, 278–282. [Google Scholar] [CrossRef]
- Qi, Y.; Qiu, C.; Xiao, M.; He, H.; Ke, M.; Liu, Z. Acoustic realization of quadrupole topological insulators. Phys. Rev. Lett. 2020, 124, 206601. [Google Scholar] [CrossRef]
- Fan, H.; Gao, H.; Liu, T.; An, S.; Kong, X.; Xu, G.; Zhu, J.; Qiu, C.W.; Su, Z. Reconfigurable topological modes in acoustic non-Hermitian crystals. Phys. Rev. B 2023, 107, L201108. [Google Scholar] [CrossRef]
- Guild, M.D.; Alu, A.; Haberman, M.R. Cancellation of acoustic scattering from an elastic sphere. J. Acoust. Soc. Am. 2011, 129, 1335–1365. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.Y.; Li, P.; Du, Q.J.; Peng, P. Reflected wavefront manipulation by acoustic metasurfaces with anisotropic local resonant units. Europhys. Lett. 2019, 125, 54004. [Google Scholar] [CrossRef]
- Xue, H.; Ge, Y.; Sun, H.-X.; Wang, Q.; Jia, D.; Guan, Y.-J.; Yuan, S.-Q.; Chong, Y.; Zhang, B. Observation of an acoustic octupole topological insulator. Nat. Commun. 2020, 11, 2442. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Zou, D.; Bao, J.; He, W.; Pei, Q.; Sun, H.; Zhang, X. Topolectrical-circuit realization of a four-dimensional hexadecapole insulator. Phys. Rev. B 2020, 102, 100102. [Google Scholar] [CrossRef]
- Liu, D.; Hao, L.; Zhu, W.; Yang, X.; Yan, X.; Guan, C.; Xie, Y.; Pang, S.; Chen, Z. Recent Progress in Resonant Acoustic Metasurfaces. Materials 2023, 16, 7044. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.F.; Chen, Z.G.; Ge, H.; He, C.; Li, X.; Lu, M.H.; Sun, X.-C.; Yu, S.-Y.; Zhang, X. Various topological phases and their abnormal effects of topological acoustic metamaterials. Interdiscip. Materials 2023, 2, 179–230. [Google Scholar] [CrossRef]
- Zabihi, A.; Ellouzi, C.; Shen, C. Tunable, reconfigurable, and programmable acoustic metasurfaces: A review. Front. Mater. 2023, 10, 1132585. [Google Scholar] [CrossRef]
- Arabadzhi, V.V. Absorption of long waves by linear structures. Acoust. Phys. 2010, 56, 996–1003. [Google Scholar] [CrossRef]
- Kuttruff, H. Acoustics; Taylor & Francis: London, UK; New York, NY, USA, 2007. [Google Scholar]
- Landau, L.D.; Lifshitz, E.M. The Classical Theory of Fields, 3rd ed.; Pergamon Press: Oxford, UK; New York, NY, USA; Toronto, ON, Canada; Sydney, Australia; Paris, France; Braunschweig, Germany, 1971. [Google Scholar]
- Senior, T.B.A.; Volakis, J.L. Approximate Boundary Conditions in Electromagnetics; Inst. Elect. Eng.: London, UK, 1995. [Google Scholar]
- Rahmat-Samii, Y.; Daniel, J.H. Impedance Boundary Conditions in Electromagnetics; Taylor & Francis: Boca Raton, FL, USA; London, UK; New York, NY, USA, 1995. [Google Scholar]
- Marigo, J.-J.; Murel, A. Homogenization models for thin rigid structured surfaces and films. J. Acoust. Soc. Am. 2016, 140, 260–273. [Google Scholar] [CrossRef]
- Langfeldt, F.; Riecken, J.; Gleine, W.; von Estorf, O. An efficient analytical model for baffled, multi-celled membrane-type acoustic metamaterial panels. J. Sound Vib. 2018, 417, 359–375. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kanev, N. Acoustic Properties of Surfaces Covered by Multipole Resonators. Acoustics 2024, 6, 509-522. https://doi.org/10.3390/acoustics6020027
Kanev N. Acoustic Properties of Surfaces Covered by Multipole Resonators. Acoustics. 2024; 6(2):509-522. https://doi.org/10.3390/acoustics6020027
Chicago/Turabian StyleKanev, Nikolay. 2024. "Acoustic Properties of Surfaces Covered by Multipole Resonators" Acoustics 6, no. 2: 509-522. https://doi.org/10.3390/acoustics6020027
APA StyleKanev, N. (2024). Acoustic Properties of Surfaces Covered by Multipole Resonators. Acoustics, 6(2), 509-522. https://doi.org/10.3390/acoustics6020027