Kinetics of Phosphorus Release from Vivianite, Hydroxyapatite, and Bone Char Influenced by Organic and Inorganic Compounds
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Characterization of Bone Char (BC), Hydroxyapatite (HA), and Vivianite (VI)
3.2. P Release Efficiency
3.3. Kinetics of P Release
3.4. Elemental Composition during P Release
3.5. pH
3.6. Fourier-Transform Infrared Spectroscopy
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Vance, C.P.; Uhde-Stone, C.; Allan, D.L. Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource. New Phytol. 2003, 157, 423–447. [Google Scholar] [CrossRef]
- Taşkin, M.B.; Şahin, Ö.; Taskin, H.; Atakol, O.; Inal, A.; Gunes, A. Effect of synthetic nano-hydroxyapatite as an alternative phosphorus source on growth and phosphorus nutrition of lettuce (Lactuca sativa L.) plant. J. Plant Nutr. 2018, 41, 1148–1154. [Google Scholar] [CrossRef]
- Roberts, T.L.; Johnston, A.E. Phosphorus use efficiency and management in agriculture. Resour. Conserv. Recycl. 2015, 105, 275–281. [Google Scholar] [CrossRef]
- van der Bom, F.J.T.; McLaren, T.I.; Doolette, A.L.; Magid, J.; Frossard, E.; Oberson, A.; Jensen, L.S. Influence of long-term phosphorus fertilisation history on the availability and chemical nature of soil phosphorus. Geoderma 2019, 355, 113909. [Google Scholar] [CrossRef]
- Sattari, S.Z.; Bouwman, A.F.; Giller, K.E.; van Ittersum, M.K. Residual soil phosphorus as the missing piece in the global phosphorus crisis puzzle. Proc. Natl. Acad. Sci. USA 2012, 109, 6348–6353. [Google Scholar] [CrossRef]
- Hooda, P.S.; Truesdale, V.W.; Edwards, A.C.; Withers, P.J.A.; Aitken, M.N.; Miller, A.; Rendell, A.R. Manuring and fertilization effects on phosphorus accumulation in soils and potential environmental implications. Adv. Environ. Res. 2001, 5, 13–21. [Google Scholar] [CrossRef]
- Carpenter, S.R.; Caraco, N.F.; Correll, D.L.; Howarth, R.W.; Sharpley, A.N.; Smith, V.H. Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecol. Appl. 1998, 8, 559–568. [Google Scholar] [CrossRef]
- Heindel, R.C.; Lyons, W.B.; Welch, S.A.; Spickard, A.M.; Virginia, R.A. Biogeochemical weathering of soil apatite grains in the McMurdo Dry Valleys, Antarctica. Geoderma 2018, 320, 136–145. [Google Scholar] [CrossRef]
- Mehmood, A.; Akhtar, M.S.; Imran, M.; Rukh, S. Soil apatite loss rate across different parent materials. Geoderma 2018, 310, 218–229. [Google Scholar] [CrossRef]
- Liu, R.; Lal, R. Synthetic apatite nanoparticles as a phosphorus fertilizer for soybean (Glycine max). Sci. Rep. 2014, 4, 1–6. [Google Scholar] [CrossRef]
- Watanabe, Y.; Yamada, H.; Ikoma, T.; Tanaka, J.; Stevens, G.W.; Komatsu, Y. Preparation of a zeolite NaP1/hydroxyapatite nanocomposite and study of its behavior as inorganic fertilizer. J. Chem. Technol. Biot. 2014, 89, 963–968. [Google Scholar] [CrossRef]
- Rothe, M.; Kleeberg, A.; Hupfer, M. The occurrence, identification and environmental relevance of vivianite in waterlogged soils and aquatic sediments. Earth-Sci. Rev. 2016, 158, 51–64. [Google Scholar] [CrossRef]
- Taylor, K.G.; Hudson-Edwards, K.A.; Bennett, A.J.; Vishnyakov, V. Early diagenetic vivianite [Fe3(PO4)2·8H2O] in a contaminated freshwater sediment and insights into zinc uptake: A μ-EXAFS, μ-XANES and Raman study. Appl. Geochem. 2008, 23, 1623–1633. [Google Scholar] [CrossRef]
- Siebers, N.; Kruse, J.; Leinweber, P. Speciation of Phosphorus and Cadmium in a Contaminated Soil Amended with Bone Char: Sequential Fractionations and XANES Spectroscopy. Water Air Soil Poll. 2013, 224, 1564. [Google Scholar] [CrossRef]
- Zimmer, D.; Panten, K.; Frank, M.; Springer, A.; Leinweber, P. Sulfur-enriched bone char as alternative p fertilizer: Spectroscopic, wet chemical, and yield response evaluation. Agriculture 2019, 9, 21. [Google Scholar] [CrossRef]
- Zwetsloot, M.J.; Lehmann, J.; Solomon, D. Recycling slaughterhouse waste into fertilizer: how do pyrolysis temperature and biomass additions affect phosphorus availability and chemistry? J. Sci. Food Agr. 2015, 95, 281–288. [Google Scholar] [CrossRef]
- Wopenka, B.; Pasteris, J.D. A mineralogical perspective on the apatite in bone. Mater. Sci. Eng. C 2005, 25, 131–143. [Google Scholar] [CrossRef]
- Bais, H.P.; Weir, T.L.; Perry, L.G.; Gilroy, S.; Vivanco, J.M. The role of root exudates in rhizosphere interactions with plants and other organisms. Annu. Rev. Plant Biol. 2006, 57, 233–266. [Google Scholar] [CrossRef]
- Chen, C.R.; Condron, L.M.; Davis, M.R.; Sherlock, R.R. Effects of plant species on microbial biomass phosphorus and phosphatase activity in a range of grassland soils. Biol. Fertil. Soils 2004, 40, 313–322. [Google Scholar] [CrossRef]
- Kpomblekou-A, K.; Tabatabai, M.A. Effect of low-molecular weight organic acids on phosphorus release and phytoavailabilty of phosphorus in phosphate rocks added to soils. Agr. Ecosyst. Environ. 2003, 100, 275–284. [Google Scholar] [CrossRef]
- Johnson, S.E.; Loeppert, R.H. Role of organic acids in phosphate mobilization from iron oxide. Soil Sci. Soc. Am. J. 2006, 70, 222. [Google Scholar] [CrossRef]
- Eynard, A.; del Campillo, M.C.; Barrón, V.; Torrent, J. Use of vivianite (Fe3(PO4)2 8H2O) to prevent iron chlorosis in calcareous soils. Fert. Res. 1992, 31, 61–67. [Google Scholar] [CrossRef]
- Frost, R.L.; Martens, W.; Williams, P.A.; Kloprogge, J.T. Raman and infrared spectroscopic study of the vivianite-group phosphates vivianite, baricite and bobierrite. Mineral. Mag. 2002, 66, 1063–1073. [Google Scholar] [CrossRef]
- Berzina-Cimdina, L.; Borodajenko, N. Research of calcium phosphates using fourier transform infrared spectroscopy. In Introduction to Infrared Spectroscopy; Theophile, T., Ed.; Intech Open: London, UK, 2012; pp. 123–148. [Google Scholar]
- Chang, M.C.; Tanaka, J. FTIR study for hydroxyapatite/collagen nanocomposite cross-linked by glutaraldehyde. Biomaterials 2002, 23, 4811–4818. [Google Scholar] [CrossRef]
- Rehman, I.; Bonfield, W. Characterization of hydroxyapatite and carbonated apatite by photo acoustic FTIR spectroscopy. J. Mater. Sci. Mater. Med. 1997, 8, 1–4. [Google Scholar] [CrossRef]
- Ren, F.Z.; Leng, Y. Carbonated apatite, type-A or type-B? Key Eng. Mat. 2011, 493–494, 293–297. [Google Scholar] [CrossRef]
- Vidhya, G.; kumar, G.S.; kattimani, V.S.; Girija, E.K. Comparative study of hydroxyapatite prepared from eggshells and synthetic precursors by microwave irradiation method for medical applications. Mater. Today Proc. 2019, 15, 344–352. [Google Scholar] [CrossRef]
- Wu, C.C.; Huang, S.T.; Tseng, T.W.; Rao, Q.L.; Lin, H.C. FTIR and XRD investigations on sintered fluoridated hydroxyapatite composites. J. Mol. Struct. 2010, 979, 72–76. [Google Scholar] [CrossRef]
- Flores-Cano, J.V.; Leyva-Ramos, R.; Carrasco-Marin, F.; Aragón-Piña, A.; Salazar-Rabago, J.J.; Leyva-Ramos, S. Adsorption mechanism of chromium(III) from water solution on bone char: Effect of operating conditions. Adsorption 2016, 22, 297–308. [Google Scholar] [CrossRef]
- Jia, P.; Tan, H.; Liu, K.; Gao, W. Removal of methylene blue from aqueous solution by bone char. Appl. Sci. 2018, 8, 1903. [Google Scholar] [CrossRef]
- Rojas-Mayorga, C.K.; Bonilla-Petriciolet, A.; Silvestre-Albero, J.; Aguayo-Villarreal, I.A.; Mendoza-Castillo, D.I. Physico-chemical characterization of metal-doped bone chars and their adsorption behavior for water defluoridation. Appl. Surf. Sci. 2015, 355, 748–760. [Google Scholar] [CrossRef]
- Pleshko, N.; Boskey, A.; Mendelsohn, R. Novel infrared spectroscopic method for the determination of crystallinity of hydroxyapatite minerals. Biophys. J. 1991, 60, 786–793. [Google Scholar] [CrossRef]
- Shen, J.; Yuan, L.; Zhang, J.; Li, H.; Bai, Z.; Chen, X.; Zhang, W.; Zhang, F. Phosphorus dynamics: From soil to plant. Plant Physiol. 2011, 156, 997–1005. [Google Scholar] [CrossRef] [PubMed]
- Oelkers, E.H.; Valsami-Jones, E. Phosphate Mineral Reactivity and Global Sustainability. Elements 2008, 4, 83–87. [Google Scholar] [CrossRef]
- Pierzynski, G.M.; McDowell, R.W.; Sims, J.T. Chemistry, cycling, and potential movement of inorganic phosphorus in soils. In Phosphorus: Agriculture and the Environment; Sims, J.T., Sharpley, A.N., Eds.; American Society of Agronomy, Crop Science Society of America, Soil Science Society of America: Madison, WI, USA, 2005; pp. 53–86. [Google Scholar]
- Dean, L.A.; Rubins, E.J. Anion exchange in soils: I. Exchangeable phosphorus and the anion-exchange capacity. Soil Sci. 1947, 63, 377–388. [Google Scholar] [CrossRef]
- Lazo, D.E.; Dyer, L.G.; Alorro, R.D. Silicate, phosphate and carbonate mineral dissolution behaviour in the presence of organic acids: A review. Miner. Eng. 2017, 100, 115–123. [Google Scholar] [CrossRef]
- Gypser, S.; Schütze, E.; Freese, D. Crystallization of single and binary iron- and aluminum hydroxides affect phosphorus desorption. J. Plant Nutr. Soil Sci. 2019, 741–750. [Google Scholar] [CrossRef]
- Gypser, S.; Hirsch, F.; Schleicher, A.M.; Freese, D. Impact of crystalline and amorphous iron- and aluminum hydroxides on mechanisms of phosphate adsorption and desorption. J. Environ. Sci. 2018, 70, 175–189. [Google Scholar] [CrossRef]
- Wang, X.; Liu, F.; Tan, W.; Li, W.; Feng, X.; Sparks, D.L. Characteristics of phosphate adsorption-desorption onto ferrihydrite. Soil Sci. 2013, 178, 1–11. [Google Scholar] [CrossRef]
- Blume, H.P.; Brümmer, G.W.; Horn, R.; Kandeler, E.; Kögel-Knabner, I.; Kretzschmar, R.; Stahr, K.; Wilke, B.M. Scheffer/Schachtschabel. Lehrbuch der Bodenkunde, 16th ed.; Springer: Heidelberg, Germany, 2010. [Google Scholar]
- Ohtake, H.; Tsuneda, S. Phosphorus Recovery and Recycling; Springer: Singapore, 2019. [Google Scholar]
- Janusz, W.; Skwarek, E. The study of the properties of the hydroxyapatite/electrolyte interface. Ann. UMCS Chem. 2009, 64, 11–22. [Google Scholar] [CrossRef][Green Version]
- Bell, L.C.; Posner, A.M.; Quirk, J.P. The point of zero charge of hydroxyapatite and fluorapatite in aqueous solutions. J. Colloid Interf. Sci. 1973, 42, 250–261. [Google Scholar] [CrossRef]
- Basak, B.B. Phosphorus release by low molecular weight organic acids from low-grade indian rock phosphate. Waste Biomass Valor. 2018, 11, 1. [Google Scholar] [CrossRef]
- Kpomblekou, A.K.; Tabatabai, M.A. Effect of organic acids on release of phosphorus from phosphate rocks. Soil Sci. 1994, 158, 442–453. [Google Scholar] [CrossRef]
- Menezes-Blackburn, D.; Paredes, C.; Zhang, H.; Giles, C.D.; Darch, T.; Stutter, M.; George, T.S.; Shand, C.; Lumsdon, D.; Cooper, P.; et al. Organic Acids Regulation of Chemical-Microbial Phosphorus Transformations in Soils. Environ. Sci. Technol. 2016, 50, 11521–11531. [Google Scholar] [CrossRef] [PubMed]
- Xu, R.K.; Zhu, Y.G.; Chittleborough, D. Phosphorus release from phosphate rock and iron phosphate by low-molecular-weight organic acids. J. Environ. Sci. 2004, 16, 5–8. [Google Scholar]
- Duputel, M.; van Hoye, F.; Toucet, J.; Gérard, F. Citrate adsorption can decrease soluble phosphate concentration in soil: Experimental and modeling evidence. Appl. Geochem. 2013, 39, 85–92. [Google Scholar] [CrossRef]
- Morshedizad, M.; Zimmer, D.; Leinweber, P. Effect of bone chars on phosphorus-cadmium-interactions as evaluated by three extraction procedures. J. Plant Nutr. Soil Sci. 2016, 179, 388–398. [Google Scholar] [CrossRef]
- Robinson, J.S.; Baumann, K.; Hu, Y.; Hagemann, P.; Kebelmann, L.; Leinweber, P. Phosphorus transformations in plant-based and bio-waste materials induced by pyrolysis. Ambio 2018, 47, 73–82. [Google Scholar] [CrossRef]
- Zimmer, D.; Kruse, J.; Siebers, N.; Panten, K.; Oelschläger, C.; Warkentin, M.; Hu, Y.; Zuin, L.; Leinweber, P. Bone char vs. S-enriched bone char: Multi-method characterization of bone chars and their transformation in soil. Sci. Total Environ. 2018, 643, 145–156. [Google Scholar] [CrossRef]
- Iriarte-Velasco, U.; Sierra, I.; Zudaire, L.; Ayastuy, J.L. Preparation of a porous biochar from the acid activation of pork bones. Food Bioprod. Process. 2016, 98, 341–353. [Google Scholar] [CrossRef]
- Gutiérrez Ortiz, F.J.; Aguilera, P.G.; Ollero, P. Biogas desulfurization by adsorption on thermally treated sewage-sludge. Separ. Purif. Technol. 2014, 123, 200–213. [Google Scholar] [CrossRef]
- Tsai, W.T.; Liu, S.C.; Chen, H.R.; Chang, Y.M.; Tsai, Y.L. Textural and chemical properties of swine-manure-derived biochar pertinent to its potential use as a soil amendment. Chemosphere 2012, 89, 198–203. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Cao, X.; Zhao, L.; Sun, T. Comparison of sewage sludge- and pig manure-derived biochars for hydrogen sulfide removal. Chemosphere 2014, 111, 296–303. [Google Scholar] [CrossRef]
- Zielińska, A.; Oleszczuk, P.; Charmas, B.; Skubiszewska-Zięba, J.; Pasieczna-Patkowska, S. Effect of sewage sludge properties on the biochar characteristic. J. Anal. Appl. Pyrol. 2015, 112, 201–213. [Google Scholar] [CrossRef]
- Zhang, Q.; Liu, H.; Li, W.; Xu, J.; Liang, Q. Behavior of Phosphorus during Co-gasification of Sewage Sludge and Coal. Energy Fuels 2012, 26, 2830–2836. [Google Scholar] [CrossRef]
- Ma, Y.L.; Matsunaka, T. Biochar derived from dairy cattle carcasses as an alternative source of phosphorus and amendment for soil acidity. Soil Sci. Plant Nutr. 2013, 59, 628–641. [Google Scholar] [CrossRef]
- Morshedizad, M.; Leinweber, P. Leaching of phosphorus and cadmium in soils amended with different bone chars. Clean Soil Air Water 2017, 45, 1600635. [Google Scholar] [CrossRef]
- Morshedizad, M.; Panten, K.; Klysubun, W.; Leinweber, P. Bone char effects on soil: sequential fractionations and XANES spectroscopy. SOIL 2018, 4, 23–35. [Google Scholar] [CrossRef]
- Rajan, S.S.S.; Brown, M.W.; Boyes, M.K.; Upsdell, M.P. Extractable phosphorus to predict agronomic effectiveness of ground and unground phosphate rocks. Fert. Res. 1992, 32, 291–302. [Google Scholar] [CrossRef]
- Guo, M. The 3R principles for applying biochar to improve soil health. Soil Syst. 2020, 4, 9. [Google Scholar] [CrossRef]
- McDowell, R.W.; Sharpley, A.N. Phosphorus solubility and release kinetics as a function of soil test P concentration. Geoderma 2003, 112, 143–154. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, X.; Whalen, J.K.; Cao, Y.; Quan, Z.; Liu, C.; Shi, Y. Kinetics of inorganic and organic phosphorus release influenced by low molecular weight organic acids in calcareous, neutral and acidic soils. J. Plant Nutr. Soil Sci. 2015, 178, 555–566. [Google Scholar] [CrossRef]
- Shariatmadari, H.; Shirvani, M.; Jafari, A. Phosphorus release kinetics and availability in calcareous soils of selected arid and semiarid toposequences. Geoderma 2006, 132, 261–272. [Google Scholar] [CrossRef]
- Lammers, A. Phosphatformen und Phosphatfreisetzung in Hochgedüngten Böden Europas; Herbert Utz Verlag: München, Germany, 1997. [Google Scholar]
- Chien, S.H.; Clayton, W.R. Application of elovich equation to the kinetics of phosphate release and sorption in soils. Soil Sci. Soc. Am. J. 1980, 44, 265–268. [Google Scholar] [CrossRef]
- Sparks, D.L. Kinetics of Soil Chemical Processes; Academic Press: Cambridge, MA, USA, 1989. [Google Scholar]
- Goyne, K.W.; Brantley, S.L.; Chorover, J. Effects of organic acids and dissolved oxygen on apatite and chalcopyrite dissolution: Implications for using elements as organomarkers and oxymarkers. Chem. Geol. 2006, 234, 28–45. [Google Scholar] [CrossRef]
- Shi, R.; Jia, Y.; Wang, C.; Yao, S. Mechanism of arsenate mobilization from goethite by aliphatic carboxylic acid. J. Hazard. Mater. 2009, 163, 1129–1133. [Google Scholar] [CrossRef]
- Wang, X.; Li, Q.; Hu, H.; Zhang, T.; Zhou, Y. Dissolution of kaolinite induced by citric, oxalic, and malic acids. J. Colloid Interface Sci. 2005, 290, 481–488. [Google Scholar] [CrossRef]
- Henintsoa, M.; Becquer, T.; Rabeharisoa, L.; Gerard, F. Geochemical and microbial controls of the effect of citrate on phosphorus availability in a ferralsol. Geoderma 2017, 291, 33–39. [Google Scholar] [CrossRef]
- Hyacinthe, C.; van Cappellen, P. An authigenic iron phosphate phase in estuarine sediments: composition, formation and chemical reactivity. Mar. Chem. 2004, 91, 227–251. [Google Scholar] [CrossRef]
- Liu, Q.; Matinlinna, J.P.; Chen, Z.; Ning, C.; Ni, G.; Pan, H.; Darvell, B.W. Effect of thermal treatment on carbonated hydroxyapatite: Morphology, composition, crystal characteristics and solubility. Ceram. Int. 2015, 41, 6149–6157. [Google Scholar] [CrossRef]
- Figueiredo, M.; Fernando, A.; Martins, G.; Freitas, J.; Judas, F.; Figueiredo, H. Effect of the calcination temperature on the composition and microstructure of hydroxyapatite derived from human and animal bone. Ceram. Int. 2010, 36, 2383–2393. [Google Scholar] [CrossRef]
- Barrère, F.; van Blitterswijk, C.A.; de Groot, K. Bone regeneration: molecular and cellular interactions with calcium phosphate ceramics. Int. J. Nanomed. 2006, 1, 317–332. [Google Scholar]
- Koumoulidis, G.C.; Katsoulidis, A.P.; Ladavos, A.K.; Pomonis, P.J.; Trapalis, C.C.; Sdoukos, A.T.; Vaimakis, T.C. Preparation of hydroxyapatite via microemulsion route. J. Colloid Interface Sci. 2003, 259, 254–260. [Google Scholar] [CrossRef]
- Landi, E.; Celotti, G.; Logroscino, G.; Tampieri, A. Carbonated hydroxyapatite as bone substitute. J. Europ. Ceram. Soc. 2003, 23, 2931–2937. [Google Scholar] [CrossRef]
- Pan, H.; Darvell, B.W. Effect of carbonate on hydroxyapatite solubility. Cryst. Growth Des. 2010, 10, 845–850. [Google Scholar] [CrossRef]
- Gypser, S.; Freese, D. Phosphorus release from vivianite and hydroxyapatite by organic and inorganic compounds. Pedosphere 2020, 30, 190–200. [Google Scholar] [CrossRef]
- Smith, B.C. The C=O bond, part III: Carboxylic acids. Spectroscopy 2018, 33, 14–20. [Google Scholar]
- Issa, T.B.; Sayari, F.; Ghalla, H.; Benhamada, L. Synthesis, crystal structure, DFT calculations and molecular docking of l-pyroglutamic acid. J. Mol. Struct. 2019, 1178, 436–449. [Google Scholar] [CrossRef]
- Shkir, M.; Muhammad, S.; AlFaify, S.; Irfan, A.; Patil, P.S.; Arora, M.; Algarni, H.; Jingping, Z. An investigation on the key features of a D–π–A type novel chalcone derivative for opto-electronic applications. RSC Adv. 2015, 5, 87320–87332. [Google Scholar] [CrossRef]
- Pierre, J.L.; Gautier-Luneau, I. Iron and citric acid: A fuzzy chemistry of ubiquitous biological relevance. Biometals 2000, 13, 91–96. [Google Scholar] [CrossRef]
- Syers, J.K.; Johnston, A.E.; Curtin, D. Efficiency of Soil and Fertilizer Phosphorus use. Reconciling Changing Concepts of Soil Phosphorus Behaviour with Agronomic Information; FAO: Roma, Italy, 2008. [Google Scholar]








| Kinetic Model | Linearized Equation | Declaration |
|---|---|---|
| Elovich | Qt - amount of released P in mg P m−2 at time t α/a - initial P release constants in mg P m−2 min−1 β/b - P release rate constants in mg P m−2 min−1 kp - diffusion rate constant in m s−1 Q0 - equals 0 at the beginning of P release | |
| Exponential | ||
| Parabolic |
| Vivianite | Hydroxyapatite | BC200 | BC200–2000 | BC2000 | |
|---|---|---|---|---|---|
| m2·g−1 | |||||
| BET | 39.49 | 68.39 | 94.78 | 94.41 | 92.12 |
| mg·g−1 | |||||
| P | 96.59 ± 5.71 | 159.61 ± 2.33 | 142.8 ± 1.96 | ||
| Ca | - | 370.32 ± 4.67 | 308.8 ± 4.63 | ||
| Fe | 268.47 ± 15.43 | - | - | ||
| C | - | - | 114.9 ± 0.31 | ||
| N | - | - | 12.4 ± 0.36 | ||
| S | - | - | 0.23 ± 0.05 | ||
| Mg | - | - | 5.4 ± 0.12 | ||
| K | - | - | 2.1 ± 0.26 | ||
| CaCl2 | Citric Acid | |||||
|---|---|---|---|---|---|---|
| 0.01 M | 0.05 M | 0.1 M | 0.01 M | 0.05 M | 0.1 M | |
| Released P [mg· m−2] | ||||||
| Vivianite | 0.0005 ± 0.00 | 0.0006 ± 0.00 | 0.0012 ± 0.00 | 0.16 ± 0.01 | 0.28 ± 0.07 | 0.48 ± 0.07 |
| Hydroxyapatite | 0.0012 ± 0.00 | 0.0155 ± 0.00 | 0.0233 ± 0.00 | 0.26 ± 0.01 | 0.56 ± 0.01 | 0.68 ± 0.02 |
| BC200 | 0.0000 ± 0.00 | 0.0000 ± 0.00 | 0.0000 ± 0.00 | 0.05 ± 0.00 | 0.22 ± 0.00 | 0.39 ± 0.00 |
| BC200-2000 | 0.0001 ± 0.00 | 0.0002 ± 0.00 | 0.0001 ± 0.00 | 0.04 ± 0.00 | 0.18 ± 0.01 | 0.32 ± 0.00 |
| BC2000 | 0.0001 ± 0.00 | 0.0001 ± 0.00 | 0.0001 ± 0.00 | 0.04 ± 0.00 | 0.15 ± 0.01 | 0.29 ± 0.01 |
| Released P [%] | ||||||
| Vivianite | 0.02 ± 0.00 | 0.03 ± 0.00 | 0.05 ± 0.00 | 6.50 ± 0.30 | 11.46 ± 2.88 | 19.58 ± 2.68 |
| Hydroxyapatite | 0.05 ± 0.00 | 0.66 ± 0.17 | 1.00 ± 0.19 | 11.13 ± 0.27 | 24.10 ± 0.49 | 29.34 ± 0.91 |
| BC200 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | 3.24 ± 0.07 | 14.87 ± 0.09 | 26.12 ± 0.04 |
| BC200–2000 | 0.01 ± 0.00 | 0.01 ± 0.00 | 0.00 ± 0.00 | 2.33 ± 0.02 | 11.59 ± 0.38 | 21.18 ± 0.20 |
| BC2000 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | 2.47 ± 0.11 | 9.95 ± 0.76 | 18.43 ± 0.89 |
| Elovich | Exponential | Parabolic | ||||||
|---|---|---|---|---|---|---|---|---|
| R2 | S.E. | R2 | S.E. | R2 | S.E. | |||
| Vivianite | CaCl2 | 0.01 M | 0.98 *** | 0.001 | 0.95 *** | 0.158 | 0.94 *** | 0.001 |
| 0.05 M | 0.95 *** | 0.002 | 0.96 *** | 0.164 | 0.96 *** | 0.002 | ||
| 0.1 M | 0.97 *** | 0.003 | 0.97 *** | 0.136 | 0.96 *** | 0.003 | ||
| CA | 0.01 M | 0.960 | 0.468 | 0.94 *** | 0.260 | 0.870 | 0.858 | |
| 0.05 M | 0.830 | 1.912 | 0.92 ** | 0.351 | 0.800 | 2.064 | ||
| 0.1 M | 0.90 * | 2.322 | 0.96 * | 0.272 | 0.940 | 1.849 | ||
| Hydroxyapatite | CaCl2 | 0.01 M | 0.87 *** | 0.008 | 0.82 *** | 0.173 | 0.62 *** | 0.013 |
| 0.05 M | 0.52 *** | 0.220 | 0.59 *** | 0.247 | 0.35 *** | 0.257 | ||
| 0.1 M | 0.74 *** | 0.336 | 0.69 *** | 0.602 | 0.48 *** | 0.475 | ||
| CA | 0.01 M | 0.94 *** | 1.260 | 0.850 | 0.211 | 0.72 *** | 2.762 | |
| 0.05 M | 0.98 *** | 1.585 | 0.920 | 0.135 | 0.80 *** | 4.722 | ||
| 0.1 M | 0.96 *** | 2.391 | 0.890 | 0.145 | 0.78 *** | 5.771 | ||
| BC200 | CaCl2 | 0.01 M | 0.96 *** | 0.000 | 0.93 *** | 0.100 | 0.86 *** | 0.000 |
| 0.05 M | 0.78 *** | 0.000 | 0.72 *** | 0.358 | 0.60 *** | 0.000 | ||
| 0.1 M | 0.89 *** | 0.000 | 0.91 *** | 0.135 | 0.78 *** | 0.000 | ||
| CA | 0.01 M | 0.980 | 0.201 | 0.96 *** | 0.174 | 0.93 ** | 0.416 | |
| 0.05 M | 1.00 *** | 0.468 | 0.920 | 0.235 | 0.88 ** | 2.442 | ||
| 0.1 M | 0.99 *** | 0.878 | 0.910 | 0.215 | 0.86 *** | 4.533 | ||
| BC200–2000 | CaCl2 | 0.01 M | 0.94 *** | 0.001 | 0.96 *** | 0.184 | 0.91 *** | 0.001 |
| 0.05 M | 0.80 *** | 0.003 | 0.89 *** | 0.406 | 0.76 *** | 0.004 | ||
| 0.1 M | 0.79 *** | 0.001 | 0.72 *** | 0.724 | 0.70 *** | 0.001 | ||
| CA | 0.01 M | 0.990 | 0.103 | 0.93 *** | 0.185 | 0.85 ** | 0.413 | |
| 0.05 M | 0.98 *** | 0.716 | 0.900 | 0.231 | 0.82 * | 2.314 | ||
| 0.1 M | 0.98 *** | 1.215 | 0.900 | 0.219 | 0.82 *** | 4.179 | ||
| BC2000 | CaCl2 | 0.01 M | 0.73 *** | 0.001 | 0.84 *** | 0.294 | 0.68 *** | 0.001 |
| 0.05 M | 0.96 *** | 0.001 | 0.92 *** | 0.230 | 0.91 *** | 0.001 | ||
| 0.1 M | 0.90 *** | 0.001 | 0.86 *** | 0.311 | 0.85 *** | 0.001 | ||
| CA | 0.01 M | 0.980 | 0.164 | 0.92 *** | 0.192 | 0.83 ** | 0.475 | |
| 0.05 M | 0.97 *** | 0.816 | 0.900 | 0.209 | 0.820 | 1.952 | ||
| 0.1 M | 0.98 *** | 1.224 | 0.900 | 0.213 | 0.82 *** | 3.632 | ||
| Elovich | Exponential | Parabolic | |||||
|---|---|---|---|---|---|---|---|
| α | β | a | b | kp | |||
| Vivianite | CaCl2 | 0.01 M | 7.9·10−5 | 1.1·10−4 | 5.7·10−5 | 0.43 | 3.3·10−5 |
| 0.05 M | 8.8·10−5 | 8.4·10−3 | 6.5·10−5 | 0.46 | 4.6·10−5 | ||
| 0.1 M | 1.8·10−4 | 4.4·10−3 | 1.3·10−4 | 0.45 | 8.6·10−5 | ||
| CA | 0.01 M | 0.02 | 27.97 | 0.01 | 0.60 | 0.01 | |
| 0.05 M | 0.03 | 15.72 | 0.01 | 0.72 | 0.02 | ||
| 0.1 M | 0.04 | 9.50 | 0.01 | 0.77 | 0.04 | ||
| Hydroxyapatite | CaCl2 | 0.01 M | 2.1·10−3 | 5.8·10−3 | 4.6·10−4 | 0.22 | 5.5·10−5 |
| 0.05 M | 0.06 | 496.91 | 7.1·10−3 | 0.18 | 6.2·10−4 | ||
| 0.1 M | 0.01 | 200.28 | 2.6·10−3 | 0.53 | 1.5·10−3 | ||
| CA | 0.01 M | 0.14 | 22.31 | 0.07 | 0.31 | 0.01 | |
| 0.05 M | 0.36 | 10.31 | 0.16 | 0.27 | 0.03 | ||
| 0.1 M | 0.55 | 9.42 | 0.21 | 0.25 | 0.04 | ||
| BC200 | CaCl2 | 0.01 M | 2.6·10−5 | 3.2·10−5 | 7.9·10−6 | 0.22 | 1.1·10−6 |
| 0.05 M | 9.6·10−6 | 3.1·10−5 | 4.0·10−6 | 0.35 | 1.1·10−6 | ||
| 0.1 M | 7.6·10−6 | 5.1·10−5 | 3.6·10−6 | 0.26 | 6.9·10−7 | ||
| CA | 0.01 M | 0.01 | 99.37 | 4.5·10−3 | 0.51 | 3.7·10−3 | |
| 0.05 M | 0.04 | 22.12 | 0.03 | 0.47 | 0.02 | ||
| 0.1 M | 0.09 | 13.10 | 0.06 | 0.41 | 0.03 | ||
| BC200–2000 | CaCl2 | 0.01 M | 1.3·10−5 | 4.2·10−4 | 8.2·10−6 | 0.55 | 8.8·10−6 |
| 0.05 M | 2.0·10−5 | 2.3·10−4 | 7.8·10−6 | 0.68 | 1.6·10−5 | ||
| 0.1 M | 7.7·10−6 | 7.2·10−4 | 2.5·10−6 | 0.70 | 4.9·10−6 | ||
| CA | 0.01 M | 0.01 | 146.37 | 0.01 | 0.40 | 2.4·10−3 | |
| 0.05 M | 0.05 | 29.33 | 0.03 | 0.41 | 0.01 | ||
| 0.1 M | 0.09 | 16.27 | 0.05 | 0.39 | 0.02 | ||
| BC2000 | CaCl2 | 0.01 M | 1.4·10−5 | 7.2·10−4 | 1.0·10−5 | 0.40 | 5.1·10−6 |
| 0.05 M | 1.3·10−5 | 5.9·10−4 | 8.5·10−6 | 0.48 | 6.3·10−6 | ||
| 0.1 M | 9.8·10−6 | 8.7·10−4 | 6.6·10−6 | 0.46 | 4.3·10−6 | ||
| CA | 0.01 M | 0.01 | 136.08 | 0.01 | 0.38 | 2.6·10−3 | |
| 0.05 M | 0.04 | 34.43 | 0.03 | 0.38 | 0.01 | ||
| 0.1 M | 0.08 | 18.24 | 0.05 | 0.39 | 0.02 | ||
| Vivianite | Hydroxy Apatite | BC200 | BC200–2000 | BC2000 | |||
|---|---|---|---|---|---|---|---|
| Initial pH | H2O | 4.27 | 7.28 | 9.69 | |||
| CaCl2 | 4.17 | 6.45 | 8.58 | ||||
| CaCl2* | 0.01 M | 2 h | 4.72 ± 0.03 | 6.62 ± 0.04 | 7.48 ± 0.08 | 7.48 ± 0.23 | 7.62 ± 0.09 |
| 48–168 h | 4.82 ± 0.05 | 6.46 ± 0.05 | 6.91 ± 0.05 | 6.94 ± 0.01 | 6.97 ± 0.03 | ||
| 0.05 M | 2 h | 4.84 ± 0.02 | 6.28 ± 0.03 | 6.90 ± 0.04 | 6.93 ± 0.03 | 7.09 ± 0.07 | |
| 48–168 h | 4.85 ± 0.05 | 6.25 ± 0.02 | 6.70 ± 0.07 | 6.74 ± 0.06 | 6.83 ± 0.13 | ||
| 0.1 M | 2 h | 4.88 ± 0.02 | 6.24 ± 0.06 | 6.90 ± 0.04 | 6.98 ± 0.06 | 7.02 ± 0.21 | |
| 48–168 h | 4.86 ± 0.04 | 6.07 ± 0.02 | 6.66 ± 0.03 | 6.63 ± 0.04 | 6.72 ± 0.00 | ||
| CA* | 0.01 M | 2 h | 5.30 ± 0.08 | 7.47 ± 0.05 | 8.67 ± 0.05 | 7.54 ± 0.15 | 7.44 ± 0.07 |
| 48–168 h | 6.76 ± 0.05 | 6.71 ± 0.02 | 7.60 ± 0.03 | 7.00 ± 0.06 | 7.10 ± 0.04 | ||
| 0.05 M | 2 h | 5.86 ± 0.01 | 7.06 ± 0.02 | 7.52 ± 0.04 | 7.05 ± 0.06 | 6.61 ± 0.01 | |
| 48–168 h | 6.43 ± 0.01 | 6.68 ± 0.01 | 6.39 ± 0.01 | 6.21 ± 0.01 | 6.23 ± 0.03 | ||
| 0.1 M | 2 h | 5.93 ± 0.01 | 7.03 ± 0.05 | 6.97 ± 0.02 | 6.69 ± 0.03 | 6.36 ± 0.01 | |
| 48–168 h | 6.61 ± 0.10 | 6.64 ± 0.02 | 6.20 ± 0.02 | 6.10 ± 0.01 | 6.08 ± 0.01 | ||
| Vivianite1 | Hydroxyapatite2 | BC3 | Assignment | ||
|---|---|---|---|---|---|
| <200 µm | 200–2000 µm | >2000 µm | |||
| 3745–2570 | 3737–2585 | 3737–2585 | H2O | ||
| 3750–2500 | 3571 | 3571 | 3571 | 3571 | OH stretching |
| 1629 | 1640 | 1633 | 1633 | H2O | |
| 1452 | 1480 | 1480 | 1480 | CO32− | |
| 1418 | 1424 | 1424 | 1424 | ||
| 1155 | 1176 | PO43− ν3 | |||
| 1086 | 1136 | 1115 | 1136 | ||
| 1023 | |||||
| 993 | |||||
| 954 | 1014 | 1003 | 1077 | 1003 | PO43− ν1 |
| 963 | 963 | 963 | 963 | CO32− | |
| 827 | 876 | 877 | 877 | 877 | OH libration |
| 647 | 647 | PO43− ν4 | |||
| 621 | 619 | 620 | 620 | 620 | |
| 586 | 586 | 586 | 586 | ||
| 522 | 552 | PO43− ν2 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schütze, E.; Gypser, S.; Freese, D. Kinetics of Phosphorus Release from Vivianite, Hydroxyapatite, and Bone Char Influenced by Organic and Inorganic Compounds. Soil Syst. 2020, 4, 15. https://doi.org/10.3390/soilsystems4010015
Schütze E, Gypser S, Freese D. Kinetics of Phosphorus Release from Vivianite, Hydroxyapatite, and Bone Char Influenced by Organic and Inorganic Compounds. Soil Systems. 2020; 4(1):15. https://doi.org/10.3390/soilsystems4010015
Chicago/Turabian StyleSchütze, Elisabeth, Stella Gypser, and Dirk Freese. 2020. "Kinetics of Phosphorus Release from Vivianite, Hydroxyapatite, and Bone Char Influenced by Organic and Inorganic Compounds" Soil Systems 4, no. 1: 15. https://doi.org/10.3390/soilsystems4010015
APA StyleSchütze, E., Gypser, S., & Freese, D. (2020). Kinetics of Phosphorus Release from Vivianite, Hydroxyapatite, and Bone Char Influenced by Organic and Inorganic Compounds. Soil Systems, 4(1), 15. https://doi.org/10.3390/soilsystems4010015
