Asymptotic Formulation for the Rayleigh Wave on a Nonlocally Elastic Half-Space
Abstract
1. Introduction
2. Materials and Methods
2.1. Statement of the Problem
2.2. Perturbation Scheme
3. Results and Discussion
3.1. Asymptotic Formulation for the Nonlocally Elastic Rayleigh Wave
3.2. Hyperbolic Equation at a Prescribed Depth
4. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Colombi, A.; Colquitt, D.; Roux, P.; Guenneau, S.; Craster, R.V. A seismic metamaterial: The resonant metawedge. Sci. Rep. 2016, 6, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Pu, X.; Palermo, A.; Cheng, Z.; Shi, Z.; Marzani, A. Seismic metasurfaces on porous layered media: Surface resonators and fluid-solid interaction effects on the propagation of Rayleigh waves. Int. J. Eng. Sci. 2020, 154, 103347. [Google Scholar] [CrossRef]
- Bratov, V.; Kuznetsov, S.; Morozov, N. Seismic barriers filled with solid elastic and granular materials: Comparative analysis. Math. Mech. Solids 2022, 27, 1761–1770. [Google Scholar] [CrossRef]
- Nieves, M.J.; Carta, G.; Pagneux, V.; Brun, M. Rayleigh waves in micro-structured elastic systems: Non-reciprocity and energy symmetry breaking. Int. J. Eng. Sci. 2020, 156, 103365. [Google Scholar] [CrossRef]
- El Masri, E.; Waters, T.; Ferguson, N. Guided wave inspection of bars in reinforced-concrete beams using surface-mounted vibration sensors. Vibration 2020, 3, 343–356. [Google Scholar] [CrossRef]
- Kröner, E. Elasticity theory of materials with long range cohesive forces. Int. J. Solids Struct. 1967, 3, 731–742. [Google Scholar] [CrossRef]
- Edelen, D.G.B.; Laws, N. On the thermodynamics of systems with nonlocality. Arch. Ration. Mech. Anal. 1971, 43, 24–35. [Google Scholar] [CrossRef]
- Eringen, A.C.; Edelen, D.G.B. On nonlocal elasticity. Int. J. Eng. Sci. 1972, 10, 233–248. [Google Scholar] [CrossRef]
- Eringen, A.C. On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J. Appl. Phys. 1983, 54, 4703–4710. [Google Scholar] [CrossRef]
- Eringen, A.C. Nonlocal Continuum Field Theories; Springer: New York, NY, USA, 2002. [Google Scholar]
- Elishakoff, I.; Dujat, K.; Muscolino, G.; Bucas, S.; Natsuki, T.; Wang, C.M.; Pentaras, D.; Versaci, C.; Storch, J.; Challamel, N.; et al. Carbon Nanotubes and Nanosensors: Vibration, Buckling and Balistic Impact; John Wiley & Sons: New York, NY, USA, 2013. [Google Scholar]
- Karlicic, D.; Murmu, T.; Adhikari, S.; McCarthy, M. Non-Local Structural Mechanics; John Wiley & Sons: NewYork, NY, USA, 2015. [Google Scholar]
- Challamel, N.; Wang, C.M. The small length scale effect for a non-local cantilever beam: A paradox solved. Nanotechnology 2008, 19, 345703. [Google Scholar] [CrossRef]
- Chebakov, R.; Kaplunov, J.; Rogerson, G.A. Refined boundary conditions on the free surface of an elastic half-space taking into account non-local effects. Proc. R. Soc. A Math. Phys. Eng. Sci. 2016, 472, 20150800. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.P.; Challamel, N.; Wang, C.M.; Zhang, H. Comparison of nano-plate bending behaviour by Eringen nonlocal plate, Hencky bar-net and continualised nonlocal plate models. Acta Mech. 2019, 230, 885–907. [Google Scholar] [CrossRef]
- Pisano, A.A.; Fuschi, P.; Polizzotto, C. Integral and differential approaches to Eringen’s nonlocal elasticity models accounting for boundary effects with applications to beams in bending. ZAMM 2021, 101, e202000152. [Google Scholar] [CrossRef]
- Wang, Y.B.; Zhu, X.W.; Dai, H.H. Exact solutions for the static bending of Euler-Bernoulli beams using Eringen’s two-phase local/nonlocal model. AIP Adv. 2016, 6, 085114. [Google Scholar] [CrossRef]
- Romano, G.; Barretta, R.; Diaco, M.; de Sciarra, F.M. Constitutive boundary conditions and paradoxes in nonlocal elastic nanobeams. Int. J. Mech. Sci. 2017, 121, 151–156. [Google Scholar] [CrossRef]
- Vaccaro, M.S.; Pinnola, F.P.; de Sciarra, F.M.; Barretta, R. Limit behaviour of Eringen’s two-phase elastic beams. Europ. J. Mech.-A/Solids 2021, 89, 104315. [Google Scholar] [CrossRef]
- Kaplunov, J.; Prikazchikov, D.A.; Prikazchikova, L. On integral and differential formulations in nonlocal elasticity. Eur. J. Mech.-A/Solids 2022, 104497. [Google Scholar] [CrossRef]
- Kaplunov, J.; Prikazchikov, D.A.; Prikazchikova, L. On non-locally elastic Rayleigh wave. Philos. Trans. R. Soc. A 2022, 380, 20210387. [Google Scholar] [CrossRef]
- Zaera, R.; Serrano, Ó.; Fernández-Sáez, J. Non-standard and constitutive boundary conditions in nonlocal strain gradient elasticity. Meccanica 2020, 55, 469–479. [Google Scholar] [CrossRef]
- Kaplunov, J.; Prikazchikov, D.A. Asymptotic theory for Rayleigh and Rayleigh-type waves. In Advances in Applied Mechanics; Bordas, S.P.A., Balint, D.S., Eds.; Elsevier: London, UK, 2017; pp. 1–106. [Google Scholar]
- Chadwick, P. Surface and interfacial waves of arbitrary form in isotropic elastic media. J. Elast. 1976, 6, 73–80. [Google Scholar] [CrossRef]
- Kiselev, A.P.; Parker, D.F. Omni-directional Rayleigh, Stoneley and Schölte waves with general time dependence. Proc. R. Soc. A Math. Phys. Eng. Sci. 2010, 466, 2241–2258. [Google Scholar] [CrossRef]
- Khajiyeva, L.A.; Prikazchikov, D.A.; Prikazchikova, L.A. Hyperbolic-elliptic model for surface wave in a pre-stressed incompressible elastic half-space. Mech. Res. Comm. 2018, 92, 49–53. [Google Scholar] [CrossRef]
- Fu, Y.; Kaplunov, J.; Prikazchikov, D. Reduced model for the surface dynamics of a generally anisotropic elastic half-space. Proc. R. Soc. A Math. Phys. Eng. Sci. 2020, 476, 20190590. [Google Scholar] [CrossRef]
- Wootton, P.T.; Kaplunov, J.; Colquitt, D.J. An asymptotic hyperbolic–elliptic model for flexural-seismic metasurfaces. Proc. R. Soc. A 2020, 475, 20190079. [Google Scholar] [CrossRef]
- Wootton, P.T.; Kaplunov, J.; Prikazchikov, D. A second-order asymptotic model for Rayleigh waves on a linearly elastic half plane. IMA J. Appl. Math. 2020, 85, 113–131. [Google Scholar] [CrossRef]
- Mubaraki, A.; Prikazchikov, D. On Rayleigh wave field induced by surface stresses under the effect of gravity. Math. Mech. Solids 2022, 27, 1771–1782. [Google Scholar] [CrossRef]
- Sobolev, S. Some problems in wave propagation. In Differential and integral equations of mathematical physics; Russian translation; Frank, P., von Mises, R., Eds.; ONTI: Moscow, Russia, 1937; pp. 468–617. [Google Scholar]
- Prikazchikov, D.A. Rayleigh waves of arbitrary profile in anisotropic media. Mech. Res. Comm. 2013, 50, 83–86. [Google Scholar] [CrossRef]
- Parker, D.F. The Stroh formalism for elastic surface waves of general profile. Proc. R. Soc. A Math. Phys. Eng. Sci. 2013, 469, 20132160. [Google Scholar] [CrossRef]
- Shubin, M.A. Pseudodifferential Operators and Spectral Theory, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2001. [Google Scholar]
- Dai, H.H.; Kaplunov, J.D.; Prikazchikov, D.A. A long-wave model for the surface elastic wave in a coated half-space. Proc. R. Soc. 2010, 466, 3097–3116. [Google Scholar] [CrossRef]
- Kaplunov, J.D.; Prikazchikov, D.A.; Sabirova, R.F. On a hyperbolic equation for the Rayleigh wave. Dokl. Phys. 2022, 506, 63–66. [Google Scholar]
- Eremeyev, V. Strongly anisotropic surface elasticity and antiplane surface waves. Philos. Trans. R. Soc. A 2020, 378, 20190100. [Google Scholar] [CrossRef] [PubMed]
- Liam, L.S.; Adytia, D.; Van Groesen, E. Embedded wave generation for dispersive surface wave models. Ocean Eng. 2014, 80, 73–83. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prikazchikov, D.A. Asymptotic Formulation for the Rayleigh Wave on a Nonlocally Elastic Half-Space. Vibration 2023, 6, 57-64. https://doi.org/10.3390/vibration6010005
Prikazchikov DA. Asymptotic Formulation for the Rayleigh Wave on a Nonlocally Elastic Half-Space. Vibration. 2023; 6(1):57-64. https://doi.org/10.3390/vibration6010005
Chicago/Turabian StylePrikazchikov, Danila A. 2023. "Asymptotic Formulation for the Rayleigh Wave on a Nonlocally Elastic Half-Space" Vibration 6, no. 1: 57-64. https://doi.org/10.3390/vibration6010005
APA StylePrikazchikov, D. A. (2023). Asymptotic Formulation for the Rayleigh Wave on a Nonlocally Elastic Half-Space. Vibration, 6(1), 57-64. https://doi.org/10.3390/vibration6010005