Motion Sickness during Roll Motion: VR HMD View versus Monitor View
Abstract
:1. Introduction
2. Methods
2.1. Subjects
2.2. Motion Stimuli
2.3. Visual Stimuli
2.4. Cabin Environment and Seating
2.5. Experimental Design and Procedure
2.6. Statistical Analysis
3. Results
3.1. Subject Susceptibility to Motion Sickness
3.2. Illness Ratings
3.3. Symptoms
4. Discussion
4.1. Effect of Visual Scene
4.2. Effect of Duration
4.3. Effect of Habituation to Motion
4.4. Self-Rating of Sickness Susceptibility
4.5. Other Factors Influencing Severity of Motion Sickness
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Correction Statement
References
- Howarth, H.V.; Griffin, M.J. Effect of roll oscillation frequency on motion sickness. Aviat. Space Environ. Med. 2003, 74, 326–331. [Google Scholar] [PubMed]
- Wyllie, I.H.; Griffin, M.J. Discomfort from sinusoidal oscillation in the roll and lateral axes at frequencies between 0.2 and 1.6 Hz. J. Acoust. Soc. Am. 2007, 121, 2644–2654. [Google Scholar] [CrossRef] [PubMed]
- Joseph, J.A.; Griffin, M.J. Motion sickness: Effect of the magnitude of roll and pitch oscillation. Aviat. Space Environ. Med. 2008, 79, 390–396. [Google Scholar] [CrossRef] [PubMed]
- Joseph, J.A.; Griffin, M.J. Motion sickness: Effect of changes in magnitude of combined lateral and roll oscillation. Aviat. Space Environ. Med. 2008, 79, 1019–1027. [Google Scholar] [CrossRef] [PubMed]
- Beard, G.F.; Griffin, M.J. Discomfort caused by low-frequency lateral oscillation, roll oscillation and roll-compensated lateral oscillation. Ergonomics 2013, 56, 103–114. [Google Scholar] [CrossRef]
- Howarth, H.V.; Martino, M.M.; Griffin, M.J. Laboratory study of the effect of visual scene on motion sickness caused by lateral oscillation. In Proceedings of the 34th Meeting of the UK Group on Human Response to Vibration, Ford Motor Company, Essex, UK, 22–24 September 1999. [Google Scholar]
- Griffin, M.J.; Newman, M.M. An experimental study of low-frequency motion in cars. J. Automob. Eng. 2004, 218, 1231–1238. [Google Scholar] [CrossRef]
- Griffin, M.J.; Newman, M.M. Visual field effects on motion sickness in cars. Aviat. Space Environ. Med. 2004, 75, 739–748. [Google Scholar]
- Wada, T.; Yoshida, K. Effect of passengers’ active head tilt and opening/closure of eyes on motion sickness in lateral acceleration environment of cars. Ergonomics 2016, 59, 1050–1059. [Google Scholar] [CrossRef]
- Sumayli, Y.M.; Ye, Y. The effect of visual scene on motion sickness induced by lateral oscillation. In Proceedings of the 8th American Conference on Human Vibration, Organized by West Virginia University School of Medicine and Centres for Disease Control and Prevention, National Institute for Occupational Safety and Health, Morgantown, WV, USA, 23–25 June 2021. [Google Scholar]
- Probst, T.; Krafczyk, S.; Büchele, W.; Brandt, T. Visuelle Prävention der Bewegungskrankheit im Auto [Visual prevention from motion sickness in cars]. Arch. Psychiatr. Nervenkr. 1982, 231, 409–421. (In German) [Google Scholar] [CrossRef]
- Butler, C.A.; Griffin, M.J. Motion sickness with combined fore-aft and pitch oscillation: Effect of phase and the visual scene. Aviat. Space Environ. Med. 2009, 80, 946–954. [Google Scholar] [CrossRef]
- Schmidt, E.A.; Kuiper, O.X.; Wolter, S.; Diels, C.; Bos, J.E. An international survey on the incidence and modulating factors of carsickness. Transp. Res. Part F-Traffic Psychol. Behav. 2020, 71, 76–87. [Google Scholar] [CrossRef]
- Reason, J.T.; Diaz, E.D. Effects of visual reference on adaptation to motion sickness and subjective responses evoked by graded cross-coupled angular accelerations. In Proceedings of the 5th Symposium on the Role of the Vestibular Organs in Space Exploration, NASA SP-314. Washington, DC, USA, 1–3 January 1973. [Google Scholar]
- Lackner, J.R.; Graybiel, A. Some influences of vision on susceptibility to motion sickness. Aviat. Space Environ. Med. 1979, 50, 1122–1125. [Google Scholar] [PubMed]
- Leger, A.; Money, K.E.; Landolt, J.P.; Cheung, B.S.; Rodden, B.E. Motion sickness caused by rotations about Earth-horizontal and Earth-vertical axes. J. Appl. Physiol. Respir. Environ. Exerc. Physiol. 1981, 50, 469–477. [Google Scholar] [CrossRef] [PubMed]
- Rolnick, A.; Bles, W. Performance and well-being under tilting conditions: The effects of visual reference and artificial horizon. Aviat. Space Environ. Med. 1989, 60, 779–785. [Google Scholar]
- Diels, C.; Howarth, P.A. Visually induced motion sickness: Single-versus dual-axis motion. Displays 2011, 32, 175–180. [Google Scholar] [CrossRef]
- Keshavarz, B.; Hecht, H. Axis rotation and visually induced motion sickness: The role of combined roll, pitch, and yaw motion. Aviat. Space Environ. Med. 2011, 82, 1023–1029. [Google Scholar] [CrossRef]
- McGill, M.; Alexander, N.G.; Brewster, S. I Am The Passenger: How Visual Motion Cues Can Influence Sickness For In-Car VR. In Proceedings of the CHI Conference on Human Factors in Computing Systems, Denver, CO, USA, 6–11 May 2017. [Google Scholar]
- Qiu, Z.; McGill, M.; Pöhlmann, K.M.T.; Brewster, S.A. Display Rotation for Reducing Motion Sickness Caused by Using VR in Vehicles. In Proceedings of the 14th International Conference on Automotive User Interfaces and Interactive Vehicular Applications, Seoul, Republic of Korea, 17–20 September 2022. [Google Scholar] [CrossRef]
- Pöhlmann, K.M.; Auf Der Heyde, M.S.; Li, G.; Verstraten, F.; Brewster, S.A.; McGill, M. Can Visual Motion Presented in a VR Headset Reduce Motion Sickness for Vehicle Passengers? In Proceedings of the 14th International Conference on Automotive User Interfaces and Interactive Vehicular Applications, Seoul, Republic of Korea, 17–20 September 2022. [Google Scholar] [CrossRef]
- BS 6841:1987; Measurement and Evaluation of Human Exposure to Whole-Body Mechanical Vibration and Repeated Shock. British Standard: Singapore. Available online: https://www.en-standard.eu/bs-6841-1987-guide-to-measurement-and-evaluation-of-human-exposure-to-whole-body-mechanical-vibration-and-repeated-shock/ (accessed on 10 November 2022).
- ISO 2631-1:1997; Mechanical Vibration and Shock—Evaluation of Human Exposure to Whole-Body Vibration—Part 1: General Requirements. International Standard: Geneva, Switzerland. Available online: https://www.iso.org/obp/ui/#iso:std:iso:2631:-1:ed-2:v2:en (accessed on 10 November 2022).
- Griffin, M.J.; Howarth, H.V. Motion Sickness History Questionnaire; Technical Report 283; Institute of Sound and Vibration Research, University of Southampton: Southampton, UK, 2000. [Google Scholar]
- Golding, J.F.; Kerguelen, M. A comparison of the nauseogenic potential of low-frequency vertical versus horizontal linear oscillation. Aviat. Space Environ. Med. 1992, 63, 491–497. [Google Scholar]
- Bos, J.E.; MacKinnon, S.N.; Patterson, A. Motion sickness symptoms in a ship motion simulator: Effects of inside, outside, and no view. Aviat. Space Environ. Med. 2005, 76, 1111–1118. [Google Scholar]
- Barr, C.C.; Schultheis, L.W.; Robinson, D.A. Voluntary, non-visual control of the human vestibulo-ocular reflex. Acta Otolaryngol. 1976, 81, 365–375. [Google Scholar] [CrossRef] [PubMed]
- Weissman, B.M.; DiScenna, A.O.; Ekelman, B.L.; Leigh, R.J. Effect of eyelid closure and vocalization upon the vestibulo-ocular reflex during rotational testing. Ann Otol Rhinol Laryngol. 1989, 98, 548–550. [Google Scholar] [CrossRef]
- Ebenholtz, S.M.; Cohen, M.M.; Linder, B.J. The possible role of nystagmus in motion sickness: A hypothesis. Aviat. Space Environ. Med. 1994, 65, 1032–1035. [Google Scholar] [PubMed]
- Benzeroual, K.; Allison, R.S. Cyber (motion) sickness in active stereoscopic 3D gaming. In Proceedings of the International Conference on 3D Imaging, Liege, Belgium, 3–5 December 2013. [Google Scholar] [CrossRef]
- Keshavarz, B. Exploring Behavioral Methods to Reduce Visually Induced Motion Sickness in Virtual Environments. In Proceedings of the International Conference on Virtual, Augmented and Mixed Reality (VAMR), Toronto, ON, Canada, 17–22 July 2016. [Google Scholar]
- Davis, S.; Nesbitt, K.; Nalivaiko, E. Comparing the onset of cybersickness using the Oculus Rift and two virtual roller coasters. In Proceedings of the 11th Australasian Conference on Interactive Entertainment (IE), Sydney, Australia, 27–30 January 2015. [Google Scholar]
- Dennison, M.S.; Wisti, A.Z.; D’Zmura, M. Use of physiological signals to predict cybersickness. Displays 2016, 44, 42–52. [Google Scholar] [CrossRef]
- Fulvio, J.M.; Ji, M.; Rokers, B. Variations in visual sensitivity predict motion sickness in virtual reality. Entertain. Comput. 2021, 38, 1004–1023. [Google Scholar] [CrossRef]
- Llorach, G.; Evans, A.; Blat, J. Simulator sickness and presence using HMDs: Comparing use of a game controller and a position estimation system. In Proceedings of the 20th ACM Symposium on Virtual Reality Software and Technology, Edinburgh, Scotland, 11–13 November 2014. [Google Scholar] [CrossRef]
- Rebenitsch, L.; Owen, C. Review on cybersickness in applications and visual displays. Virtual Real. 2016, 20, 101–125. [Google Scholar] [CrossRef]
- Kim, J.; Charbel-Salloum, A.; Perry, S.; Palmisano, S. Effects of display lag on vection and presence in the Oculus Rift HMD. Virtual Real. 2022, 26, 425–436. [Google Scholar] [CrossRef]
- Warburton, M.; Mon-Williams, M.; Mushtaq, F.; Morehead, J.R. Measuring motion-to-photon latency for sensorimotor experiments with virtual reality systems. Behav. Res. Methods. 2022. [Google Scholar] [CrossRef]
- DiZio, P.; Lackner, J.R. Circumventing side effects of immersive virtual environments. In Proceedings of the 7th International Conference on Human-Computer Interaction, San Francisco, CA, USA, 24 August 1997. [Google Scholar]
- Draper, M.H.; Viirre, E.S.; Furness, T.A.; Gawron, V.J. Effects of image scale and system time delay on simulator sickness within head-coupled virtual environments. Hum. Factors 2001, 43, 129–146. [Google Scholar] [CrossRef]
- Jerald, J.J. Scene-Motion-and Latency-Perception Thresholds for Head-Mounted Displays. Doctoral Dissertation, The University of North Carolina at Chapel Hill, Chapel Hill, NG, USA, 2009. [Google Scholar]
- Turner, M.; Griffin, M.J. Motion sickness in public road transport: The relative importance of motion, vision and individual differences. Br. J. Psychol. 1999, 90, 519–530. [Google Scholar] [CrossRef]
- McCauley, M.E.; Royal, J.W.; Wylie, C.D.; O’hanlon, J.F.; Mackie, P.R. Motion Sickness Incidence: Exploratory Studies of Habituation, Pitch and Roll, and the Refinement of a Mathematical Model; Technical Report; Canyon Research Group Inc Goleta CA Human Factors Research Div.: Goleta, CA, USA, 1976. [Google Scholar]
- Howarth, H.V.; Griffin, M.J. Effect of foreground visual information on motion sickness caused by lateral oscillation. In Proceedings of the 35th UK Group Meeting on Human Response to Vibration, Southampton, UK, 12–14 September 2000. [Google Scholar]
- Howarth, H.V. A comparison of motion sickness with 2-dimensional and 3-dimensional visual scenes. In Proceedings of the 36th UK Group Conference on Human Response to Vibration, Farnborough, UK, 12–14 September 2001. [Google Scholar]
- Griffin, M.J.; Mills, K.L. Effect of magnitude and direction of horizontal oscillation on motion sickness. Aviat. Space Environ. Med. 2002, 73, 640–646. [Google Scholar]
- Donohew, B.E.; Griffin, M.J. Motion sickness: Effect of the frequency of lateral oscillation. Aviat. Space Environ. Med. 2004, 75, 649–656. [Google Scholar]
- Butler, C.A.; Griffin, M.J. Motion sickness during fore-and-aft oscillation: Effect of the visual scene. Aviat. Space Environ. Med. 2006, 77, 1236–1243. [Google Scholar] [PubMed]
- Joseph, J.A.; Griffin, M.J. Motion sickness from combined lateral and roll oscillation: Effect of varying phase relationships. Aviat. Space Environ. Med. 2007, 78, 944–950. [Google Scholar] [CrossRef]
- Donohew, B.E.; Griffin, M.J. Motion sickness with fully roll-compensated lateral oscillation: Effect of oscillation frequency. Aviat. Space Environ. Med. 2009, 80, 94–101. [Google Scholar] [CrossRef] [PubMed]
- Donohew, B.E.; Griffin, M.J. Motion sickness with combined lateral and roll oscillation: Effect of percentage compensation. Aviat. Space Environ. Med. 2010, 81, 22–29. [Google Scholar] [CrossRef] [PubMed]
- Golding, J.F.; Finch, M.I.; Stott, J.R. The effects of motion direction, body axis, and posture on motion sickness induced by low frequency linear oscillation. Aviat. Space Environ. Med. 1995, 66, 1046–1051. [Google Scholar]
- Golding, J.F.; Markey, H.M. Effect of frequency of horizontal linear oscillation on motion sickness and somatogravic illusion. Aviat. Space Environ. Med. 1996, 67, 121–126. [Google Scholar]
- Golding, J.F.; Finch, M.I.; Stott, J.R. Frequency effect of 0.35-1.0 Hz horizontal translational oscillation on motion sickness and the somatogravic illusion. Aviat. Space Environ. Med. 1997, 68, 396–402. [Google Scholar]
- Golding, J.F.; Mueller, A.G.; Gresty, M.A. A motion sickness maximum around the 0.2 Hz frequency range of horizontal translational oscillation. Aviat. Space Environ. Med. 2001, 72, 188–192. [Google Scholar]
- Golding, J.F.; Bles, W.; Bos, J.E.; Haynes, T.; Gresty, M.A. Motion sickness and tilts of the inertial force environment: Active suspension systems vs. active passengers. Aviat. Space Environ. Med. 2003, 74, 220–227. [Google Scholar]
- Lawther, A.; Griffin, M.J. A survey of the occurrence of motion sickness amongst passengers at sea. Aviat. Space Environ. Med. 1988, 59, 399–406. [Google Scholar]
- Turner, M.; Griffin, M.J.; Holland, I. Airsickness and aircraft motion during short-haul flights. Aviat. Space Environ. Med. 2000, 71, 1181–1189. [Google Scholar] [PubMed]
- Koslucher, F.; Munafo, J.; Stoffregen, T.A. Postural sway in men and women during nauseogenic motion of the illuminated environment. Exp. Brain Res. 2016, 234, 2709–2720. [Google Scholar] [CrossRef] [PubMed]
- Freitag, S.; Weyers, B.; Kuhlen, T.W. Examining rotation gain in CAVE-like virtual environments. IEEE Trans. Vis. Comput. Graph. 2016, 22, 1462–1471. [Google Scholar] [CrossRef] [PubMed]
- Munafo, J.; Diedrick, M.; Stoffregen, T.A. The virtual reality head-mounted display Oculus Rift induces motion sickness and is sexist in its effects. Exp. Brain Res. 2017, 235, 889–901. [Google Scholar] [CrossRef]
- Saredakis, D.; Szpak, A.; Birckhead, B.; Keage, H.A.; Rizzo, A.; Loetscher, T. Factors associated with virtual reality sickness in head-mounted displays: A systematic review and meta-analysis. Front. Hum. Neurosci. 2020, 14, 96. [Google Scholar] [CrossRef]
Visual Condition | Task | Device |
---|---|---|
Condition 1 | Watching 360° videos | HMD |
Condition 2 | Reading articles on the BBC news website | Monitor |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sumayli, Y.; Ye, Y. Motion Sickness during Roll Motion: VR HMD View versus Monitor View. Vibration 2023, 6, 45-56. https://doi.org/10.3390/vibration6010004
Sumayli Y, Ye Y. Motion Sickness during Roll Motion: VR HMD View versus Monitor View. Vibration. 2023; 6(1):45-56. https://doi.org/10.3390/vibration6010004
Chicago/Turabian StyleSumayli, Yahya, and Ying Ye. 2023. "Motion Sickness during Roll Motion: VR HMD View versus Monitor View" Vibration 6, no. 1: 45-56. https://doi.org/10.3390/vibration6010004
APA StyleSumayli, Y., & Ye, Y. (2023). Motion Sickness during Roll Motion: VR HMD View versus Monitor View. Vibration, 6(1), 45-56. https://doi.org/10.3390/vibration6010004