Sustainable Utilization of Mill Scale in High-Calcium Fly Ash Geopolymer Concrete: Mechanical, Durability, and Radiation Shielding Properties
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Mix Proportions and Specimen Preparation
2.3. Testing
2.3.1. Physical and Mechanical Properties
2.3.2. Durability Tests
2.3.3. Radiation-Shielding Properties
3. Results and Discussion
3.1. Slump and Slump Flow
3.2. Compressive Strength and Splitting Tensile Strength
3.3. Modulus of Elasticity
3.4. Bulk Density, Porosity, and Water Absorption
3.5. Ultrasonic Pulse Velocity and Thermal Conductivity
3.6. Acid Resistance
3.7. Chloride Penetration Depth
3.8. Radiation-Shielding Properties Against Gamma Rays
3.9. Radiation-Shielding Properties Against Fast Neutrons
4. Conclusions
- Substitution of river sand with MS remarkably decreases the slump, slump flow, compressive strength, splitting tensile strength, and modulus of elasticity of the concretes. The 28-day compressive strength of GC containing 100% MS was reduced by 42% compared to the control sample, and the modulus of elasticity of GC was notably lower than that of CC.
- The use of MS as a fine aggregate replacement increases the density, porosity, and water absorption of concrete. The ultrasonic pulse velocity and thermal conductivity values of the concrete decreased with increasing MS content. A reduction in the thermal conductivity of concrete incorporating MS can result in better insulation.
- A reduction in acid resistance was found in concretes containing MS, in which CC was more affected than GC. The presence of MS in the concrete increased chloride penetration after exposure to a 3% NaCl solution. GC showed better resistance to chloride ion penetration than CC.
- Replacement of river sand with MS in geopolymers and cement concretes enhances the shielding properties against gamma rays (emitted from Cs-137 and Co-60) and fast neutron radiation. In the case of GC, as the MS content increases from 0% to 100%, the HVL decreases from 5.15 cm to 4.75 cm when exposed to Co-60 at a photon energy of 1332 keV, while the increased from 0.0635 cm−1 to 0.0644 cm−1.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chen, C.; Habert, G.; Bouzidi, Y.; Jullien, A. Environmental impact of cement production: Detail of the different processes and cement plant variability evaluation. J. Clean. Prod. 2010, 18, 478–485. [Google Scholar] [CrossRef]
- Gartner, E. Industrially interesting approaches to “low-CO2” cements. Cem. Concr. Res. 2004, 34, 1489–1498. [Google Scholar] [CrossRef]
- Meyer, C. The Greening of the Concrete Industry. Cem. Concr. Compos. 2009, 31, 601–605. [Google Scholar] [CrossRef]
- Humphreys, K.; Mahasenan, M. Towards a Sustainable Cement Industry: Climate Change. Substudy 8; World Business Council for Sustainable Development: Geneva, Switzerland, 2002. [Google Scholar]
- Josa, A.; Aguado, A.; Heino, A.; Byars, E.; Cardim, A. Comparative analysis of available life cycle inventories of cement in the EU. Cem. Concr. Res. 2004, 34, 1313–1320. [Google Scholar] [CrossRef]
- de Amorim Júnior, N.S.; Neto, J.S.A.; Santana, H.A.; Cilla, M.S.; Ribeiro, D.V. Durability and service life analysis of metakaolin-based geopolymer concretes with respect to chloride penetration using chloride migration test and corrosion potential. Constr. Build. Mater. 2021, 287, 122970. [Google Scholar] [CrossRef]
- Bezabih, T.; Kanali, C.; Thuo, J. Effects of teff straw ash on the mechanical and microstructural properties of ambient cured fly ash-based geopolymer mortar for onsite applications. Results Eng. 2023, 18, 101123. [Google Scholar] [CrossRef]
- Zhang, Y.H.; Zhong, W.L.; Fan, L.F. Long-term durability investigation of basalt fiber-reinforced geopolymer concrete in marine environment. J. Mater. Res. Technol. 2024, 31, 593–605. [Google Scholar] [CrossRef]
- Davidovits, J. Geopolymers: Inorganic polymeric new materials. J. Therm. Anal. Calorim. 1991, 37, 1633–1656. [Google Scholar] [CrossRef]
- Wallah, S.E.; Hardjito, D.; Sumajouw, D.M.J.; Rangan, B.V. Sulfate and Acid Resistance of Fly Ash-Based Geopolymer Concrete. In Australian Structural Engineering Conference 2005; Engineers Australia: Sydney, NSW, Australia, 2005. [Google Scholar]
- Aliabdo, A.A.; Abd Elmoaty, A.E.M.; Salem, H.A. Effect of cement addition, solution resting time and curing characteristics on fly ash based geopolymer concrete performance. Constr. Build. Mater. 2016, 123, 581–593. [Google Scholar] [CrossRef]
- Part, W.K.; Ramli, M.; Cheah, C.B. An Overview on the Influence of Various Factors on the Properties of Geopolymer Concrete Derived from Industrial Byproducts. Constr. Build. Mater. 2015, 77, 370–395. [Google Scholar] [CrossRef]
- Gunasekara, C.; Law, D.; Bhuiyan, S.; Setunge, S.; Ward, L. Chloride induced corrosion in different fly ash based geopolymer concretes. Constr. Build. Mater. 2019, 200, 502–513. [Google Scholar] [CrossRef]
- Ma, N.; Houser, J.B.; Wood, L.A. Production of cleaner mill scale by dynamic separation of the mill scale from the fast-moving flume water at a hot rolling mill. J. Clean. Prod. 2018, 176, 889–894. [Google Scholar] [CrossRef]
- Umadevi, T.; Brahmacharyulu, A.; Karthik, P.; Mahapatra, P.C.; Prabhu, M.; Ranjan, M. Recycling of steel plant mill scale via iron ore sintering plant. Ironmak. Steelmak. 2012, 39, 222–227. [Google Scholar] [CrossRef]
- Ozturk, M.; Depci, T.; Bahceci, E.; Karaaslan, M.; Akgol, O.; Sevim, U.K. Production of new electromagnetic wave shielder mortar using waste mill scales. Constr. Build. Mater. 2020, 242, 118028. [Google Scholar] [CrossRef]
- Sharma, R.; Hussain, S.; Seetala, N.; Matthews, J.; Edwards, R.; Amritphale, S.; Matthews, E. Simultaneous use of bismuth trioxide and mill scale for ternary blended geopolymer composite in radiation shielding applications. Prog. Nucl. Energy 2024, 172, 105213. [Google Scholar] [CrossRef]
- Nongnuang, T.; Jitsangiam, P.; Rattanasak, U.; Chindaprasirt, P. Novel electromagnetic induction heat curing process of fly ash geopolymer using waste iron powder as a conductive material. Sci. Rep. 2022, 12, 9530. [Google Scholar] [CrossRef]
- Doi, K.; Hiromoto, S.; Shinohara, T.; Tsuchiya, K.; Katayama, H.; Akiyama, E. Role of mill scale on corrosion behavior of steel rebars in mortar. Corros. Sci. 2020, 177, 108995. [Google Scholar] [CrossRef]
- Ming, J.; Shi, J.; Sun, W. Effect of mill scale on the long-term corrosion resistance of a low-alloy reinforcing steel in concrete subjected to chloride solution. Constr. Build. Mater. 2018, 163, 508–517. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, H.; Deng, Y.; Cao, Y.; He, Y.; Liu, Y.; Deng, Y. Fatigue behavior of high-strength steel wires considering coupled effect of multiple corrosion-pitting. Corros. Sci. 2025, 244, 112633. [Google Scholar] [CrossRef]
- Zhang, H.; Deng, Y.; Cao, Y.; Chen, F.; Luo, Y.; Xiao, X.; Deng, Y.; Liu, Y. Field testing, analytical, and numerical assessments on the fatigue reliability on bridge suspender by considering the coupling effect of multiple pits. Struct. Infrastruct. Eng. 2024, 1–16. [Google Scholar] [CrossRef]
- Ozturk, M.; Karabulut, A. Electromagnetic Interference Shielding Properties of Carbon Fiber Mortars with Mill Scale and Red Mud: A Comparative Study. Constr. Build. Mater. 2024, 451, 138827. [Google Scholar] [CrossRef]
- Siriwattanakarn, A.; Wongsa, A.; Eua-Anant, N.; Sata, V.; Sukontasukkul, P.; Chindaprasirt, P. Utilization of Mill Scale Waste as Natural Fine Aggregate Replacement in Mortar: Evaluation of Physical, Mechanical, Durability, and Post-Fire Properties. Recycling. 2025, 10, 20. [Google Scholar] [CrossRef]
- Ahmed, S.M.; Kamal, I. Electrical resistivity and compressive strength of cement mortar based on green magnetite nanoparticles and wastes from steel industry. Case Stud. Constr. Mater. 2022, 17, e01712. [Google Scholar] [CrossRef]
- Nawaz, A.; Hussain, S.; Tufail, R.F.; Iqbal, H.W.; Mehmood, T.; Saingam, P.; Alattyih, W.; Ahmad, J. Performance evaluation of high-performance concrete mixes incorporating recycled steel scale waste as fine aggregates. Results Eng. 2024, 24, 103079. [Google Scholar] [CrossRef]
- More, C.V.; Alsayed, Z.; Badawi, M.S.; Thabet, A.A.; Pawar, P.P. Polymeric composite materials for radiation shielding: A review. Environ. Chem. Lett. 2021, 19, 2057–2090. [Google Scholar] [CrossRef] [PubMed]
- Sayyed, M.I.; El-Mesady, I.A.; Abouhaswa, A.S.; Askin, A.; Rammah, Y.S. Comprehensive study on the structural, optical, physical and gamma photon shielding features of B2O3-Bi2O3-PbO-TiO2 glasses using WinXCOM and Geant4 code. J. Mol. Struct. 2019, 1197, 656–665. [Google Scholar] [CrossRef]
- Daungwilailuk, T.; Yenchai, C.; Rungjaroenkiti, W.; Pheinsusom, P.; Panwisawas, C.; Pansuk, W. Use of barite concrete for radiation shielding against gamma-rays and neutrons. Constr. Build. Mater. 2022, 326, 126838. [Google Scholar] [CrossRef]
- Awadeen, M.; Amin, M.; Bakr, R.H.; Tahwia, A.M. Mechanical properties, attenuation coefficient, and microstructure of ultra high-performance heavyweight concrete for radiation shielding applications. J. Build. Eng. 2024, 82, 108395. [Google Scholar] [CrossRef]
- Azreen, N.M.; Rashid, R.S.M.; Amran, Y.H.M.; Voo, Y.L.; Haniza, M.; Hairie, M.; Alyousef, R.; Alabduljabbar, H. Simulation of ultra-high-performance concrete mixed with hematite and barite aggregates using Monte Carlo for dry cask storage. Constr. Build. Mater. 2020, 263, 120161. [Google Scholar] [CrossRef]
- Glinicki, M.A.; Antolik, A.; Gawlicki, M. Evaluation of compatibility of neutron-shielding boron aggregates with Portland cement in mortar. Constr. Build. Mater. 2018, 164, 731–738. [Google Scholar] [CrossRef]
- Gökçe, H.S.; Yalçınkaya, Ç.; Tuyan, M. Optimization of reactive powder concrete by means of barite aggregate for both neutrons and gamma rays. Constr. Build. Mater. 2018, 189, 470–477. [Google Scholar] [CrossRef]
- Piotrowski, T. Neutron shielding evaluation of concretes and mortars: A review. Constr. Build. Mater. 2021, 277, 122238. [Google Scholar] [CrossRef]
- Prochon, P.; Piotrowski, T. The effect of cement and aggregate type and w/c ratio on the bound water content and neutron shielding efficiency of concretes. Constr. Build. Mater. 2020, 264, 120210. [Google Scholar] [CrossRef]
- Temuujin, J.; van Riessen, A.; Williams, R. Influence of calcium compounds on the mechanical properties of fly ash geopolymer pastes. J. Hazard. Mater. 2009, 167, 82–88. [Google Scholar] [CrossRef]
- Dombrowski, K.; Buchwald, A.; Weil, M. The influence of calcium content on the structure and thermal performance of fly ash based geopolymers. J. Mater. Sci. 2007, 42, 3033–3043. [Google Scholar] [CrossRef]
- Chindaprasirt, P.; Chareerat, T.; Hatanaka, S.; Cao, T. High-Strength Geopolymer Using Fine High-Calcium Fly Ash. J. Mater. Civ. Eng. 2011, 23, 264–270. [Google Scholar] [CrossRef]
- ASTM C192-07; Standard Practice for Making and Curing Concrete Test Specimens in the Laboratory. ASTM International: West Conshohocken, PA, USA, 2008.
- ASTM C143-08; Standard Test Method for Slump of Hydraulic-Cement Concrete. ASTM International: West Conshohocken, PA, USA, 2008.
- ASTM C1611-05; Standard Test Method for Slump Flow of Self-Consolidating Concrete. ASTM International: West Conshohocken, PA, USA, 2005.
- ASTM C39-05; Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens 1. ASTM International: West Conshohocken, PA, USA, 2005.
- ASTM C469-04; Standard Test Method for Static Modulus of Elasticity and Poisson’s Ratio of Concrete in Compression. ASTM International: West Conshohocken, PA, USA, 2004.
- ASTM C496-04; Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens. ASTM International: West Conshohocken, PA, USA, 2004.
- ASTM C642-06; Standard Test Method for Density, Absorption, and Voids in Hardened Concrete. ASTM International: West Conshohocken, PA, USA, 2006.
- ASTM C597-02; Standard Test Method for Ultrasonic Pulse Velocity Through Concrete. ASTM International: West Conshohocken, PA, USA, 2002.
- ASTM D5930; Standard Test Method for Thermal Conductivity of Plastics by Means of a Transient Line-Source Technique. ASTM International: West Conshohocken, PA, USA, 2017.
- ASTM C267-01; Standard Test Methods for Chemical Resistance of Mortars, Grouts, and Monolithic Surfacings and Polymer Concretes. ASTM International: West Conshohocken, PA, USA, 2001.
- Nuaklong, P.; Sata, V.; Wongsa, A.; Srinavin, K.; Chindaprasirt, P. Recycled aggregate high calcium fly ash geopolymer concrete with inclusion of OPC and nano-SiO2. Constr. Build. Mater. 2018, 174, 244–252. [Google Scholar] [CrossRef]
- Parvathikumar, G.; Sahadevan, B.; Palanisamy, C. Scrap steel mill scale as river sand replacement in cement concrete: Effect on durability characteristics. J. Mater. Cycles Waste Manag. 2024, 26, 1490–1504. [Google Scholar] [CrossRef]
- Alwaeli, M.; Nadziakiewicz, J. Recycling of scale and steel chips waste as a partial replacement of sand in concrete. Constr. Build. Mater. 2012, 28, 157–163. [Google Scholar] [CrossRef]
- Pan, Z.; Sanjayan, J.; Rangan, B. Fracture properties of geopolymer paste and concrete. Mag. Concr. Res. 2011, 63, 763–771. [Google Scholar] [CrossRef]
- Yost, J.R.; Radlińska, A.; Ernst, S.; Salera, M. Structural behavior of alkali activated fly ash concrete. Part 1: Mixture design, material properties and sample fabrication. Mater. Struct. 2013, 46, 435–447. [Google Scholar] [CrossRef]
- ACI 318-08; Building Code Requirements for Structural Concrete (ACI 318-08) and Commentary. American Concrete Institute: Farmington Hills, MI, USA, 2008.
- Hardjito, D.; Wallah, S.; Sumajouw, D.M.J.; Rangan, B. Fly Ash-Based Geopolymer Concrete. Aust. J. Struct. Eng. 2005, 6, 77–86. [Google Scholar] [CrossRef]
- Nasvi, M.M.C.; Gamage, R.P.; Sanjayan, J. Geopolymer as well cement and variation of its mechanical behavior with curing temperature. Greenh. Gases Sci. Technol. 2012, 2, 46–58. [Google Scholar] [CrossRef]
- Noushini, A.; Castel, A. The effect of heat-curing on transport properties of low-calcium fly ash-based geopolymer concrete. Constr. Build. Mater. 2016, 112, 464–477. [Google Scholar] [CrossRef]
- Ismail, Z.Z.; AL-Hashmi, E.A. Reuse of waste iron as a partial replacement of sand in concrete. Waste Manag. 2008, 28, 2048–2053. [Google Scholar] [CrossRef]
- Kunthawatwong, R.; Sylisomchanh, L.; Pangdaeng, S.; Wongsa, A.; Sata, V.; Sukontasukkul, P.; Chindaprasirt, P. Recycled Non-Biodegradable polyethylene terephthalate waste as fine aggregate in fly ash geopolymer and cement mortars. Constr. Build. Mater. 2022, 328, 127084. [Google Scholar] [CrossRef]
- Tawfik, T.A.; Slaný, M.; Palou, M.T. Influence of heavyweight aggregate on the fresh, mechanical, durability, and microstructural properties of self-compacting concrete under elevated temperatures. J. Build. Eng. 2023, 80, 108104. [Google Scholar] [CrossRef]
- Esen, Y.; Doğan, Z.M. Evaluation of physical and mechanical characteristics of siderite concrete to be used as heavy-weight concrete. Cem. Concr. Compos. 2017, 82, 117–127. [Google Scholar] [CrossRef]
- Chindaprasirt, P.; Rattanasak, U.; Sompop, T. Resistance to acid and sulfate solutions of microwave-assisted high calcium fly ash geopolymer. Mater. Struct. 2012, 46, 375–381. [Google Scholar] [CrossRef]
- Somna, R.; Jaturapitakkul, C.; Made, A.M. Effect of ground fly ash and ground bagasse ash on the durability of recycled aggregate concrete. Cem. Concr. Compos. 2012, 34, 848–854. [Google Scholar] [CrossRef]
- Tennakoon, C.; Shayan, A.; Sanjayan, J.G.; Xu, A. Chloride ingress and steel corrosion in geopolymer concrete based on long-term tests. Mater. Des. 2017, 116, 287–299. [Google Scholar] [CrossRef]
- Ismail, I.; Bernal, S.A.; Provis, J.L.; San Nicolas, R.; Brice, D.G.; Kilcullen, A.R.; Hamdan, S.; Van Deventer, J.S.J. Influence of fly ash on the water and chloride permeability of alkali-activated slag mortars and concretes. Constr. Build. Mater. 2013, 48, 1187–1201. [Google Scholar] [CrossRef]
- Gharieb, M.; Mosleh, Y.A.; Alwetaishi, M.; Hussein, E.E.; Sultan, M.E. Effect of using heavy aggregates on the high-performance concrete used in nuclear facilities. Constr. Build. Mater. 2021, 310, 125111. [Google Scholar] [CrossRef]
- Lotfi-Omran, O.; Sadrmomtazi, A.; Nikbin, I.M. The influences of maximum aggregate size and cement content on the mechanical and radiation shielding characteristics of heavyweight concrete. Prog. Nucl. Energy 2020, 121, 103222. [Google Scholar] [CrossRef]
- Saca, N.; Radu, L.; Fugaru, V.; Gheorghe, M.; Petre, I. Composite materials with primary lead slag content: Application in gamma radiation shielding and waste encapsulation fields. J. Clean. Prod. 2018, 179, 255–265. [Google Scholar] [CrossRef]
- Demir, I.; Gümüş, M.; Gökçe, H.S. Gamma ray and neutron shielding characteristics of polypropylene fiber-reinforced heavyweight concrete exposed to high temperatures. Constr. Build. Mater. 2020, 257, 119596. [Google Scholar] [CrossRef]
Chemical Composition (wt %) | FA | OPC | MS | SS |
---|---|---|---|---|
SiO2 | 33.27 | 19.88 | 0.17 | 29.86 |
Al2O3 | 17.18 | 5.11 | 0.04 | - |
Fe2O3 | 15.50 | 3.24 | 98.74 | - |
CaO | 22.95 | 64.46 | 0.17 | - |
SO3 | 2.60 | 2.21 | <0.01 | - |
MgO | 3.20 | 1.59 | <0.01 | - |
K2O | 1.92 | 0.22 | <0.01 | - |
Na2O | 2.13 | 0.06 | <0.01 | 12.33 |
SrO | - | 0.03 | <0.01 | - |
H2O | - | - | - | 57.81 |
Loss on Ignition | 0.06 | 3.01 | <0.01 | - |
Properties | Crushed Limestone | RS | MS |
---|---|---|---|
Specific gravity | 2.71 | 2.64 | 5.26 |
Fineness modulus | 7.82 | 1.77 | 1.86 |
Water absorption | 0.81 | 0.62 | 0.04 |
Abrasion (Los Angeles) | 23.7 | - | - |
Unit weight (kg/m³) | 1541 | 1646 | 1461 |
Mix | FA | SH | SS | RS | MS | Limestone | OPC | Water |
---|---|---|---|---|---|---|---|---|
0G | 390 | 131 | 131 | 436 | 0 | 1152 | 0 | 0 |
50G | 390 | 131 | 131 | 218 | 434 | 1152 | 0 | 0 |
75G | 390 | 131 | 131 | 109 | 651 | 1152 | 0 | 0 |
100G | 390 | 131 | 131 | 0 | 868 | 1152 | 0 | 0 |
0C | 0 | 0 | 0 | 436 | 0 | 1153 | 488 | 234 |
50C | 0 | 0 | 0 | 218 | 434 | 1153 | 488 | 234 |
100C | 0 | 0 | 0 | 0 | 869 | 1153 | 488 | 234 |
Mix | MS (%) | Density (kg/m³) | Porosity (%) | Water Absorption (%) |
---|---|---|---|---|
0G | 0 | 2356 | 10.2 | 4.4 |
50G | 50 | 2377 | 12.9 | 5.1 |
75G | 75 | 2435 | 13.7 | 6.0 |
100G | 100 | 2467 | 14.1 | 6.7 |
0C | 0 | 2331 | 8.0 | 3.4 |
50C | 50 | 2356 | 8.5 | 3.7 |
100C | 100 | 2435 | 9.1 | 3.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sylisomchanh, L.; Wongsa, A.; Yenchai, C.; Ekprasert, J.; Rattanasak, U.; Sata, V.; Chindaprasirt, P. Sustainable Utilization of Mill Scale in High-Calcium Fly Ash Geopolymer Concrete: Mechanical, Durability, and Radiation Shielding Properties. J. Compos. Sci. 2025, 9, 260. https://doi.org/10.3390/jcs9060260
Sylisomchanh L, Wongsa A, Yenchai C, Ekprasert J, Rattanasak U, Sata V, Chindaprasirt P. Sustainable Utilization of Mill Scale in High-Calcium Fly Ash Geopolymer Concrete: Mechanical, Durability, and Radiation Shielding Properties. Journal of Composites Science. 2025; 9(6):260. https://doi.org/10.3390/jcs9060260
Chicago/Turabian StyleSylisomchanh, Lattana, Ampol Wongsa, Chadet Yenchai, Jindarat Ekprasert, Ubolluk Rattanasak, Vanchai Sata, and Prinya Chindaprasirt. 2025. "Sustainable Utilization of Mill Scale in High-Calcium Fly Ash Geopolymer Concrete: Mechanical, Durability, and Radiation Shielding Properties" Journal of Composites Science 9, no. 6: 260. https://doi.org/10.3390/jcs9060260
APA StyleSylisomchanh, L., Wongsa, A., Yenchai, C., Ekprasert, J., Rattanasak, U., Sata, V., & Chindaprasirt, P. (2025). Sustainable Utilization of Mill Scale in High-Calcium Fly Ash Geopolymer Concrete: Mechanical, Durability, and Radiation Shielding Properties. Journal of Composites Science, 9(6), 260. https://doi.org/10.3390/jcs9060260