Prioritization of Erosion Prone Micro-Watersheds Using Morphometric Analysis coupled with Multi-Criteria Decision Making †
Abstract
:1. Introduction
2. Study Area
3. Dataset and Methodology
3.1. Dataset used
3.2. Methodology
3.2.1. Morphometric Analysis
3.2.2. TOPSIS
4. Results and Discussion
5. Conclusion
Author Contributions
Funding
Conflicts of Interest
References
- Arabameri, A.; Pradhan, B.; Pourghasemi, H.R.; Rezaei, K. Identification of erosion-prone areas using different multi-criteria decision-making techniques and GIS. Geomat Nat Haz Risk 2018, 9, 1129–1155. [Google Scholar] [CrossRef]
- Nitheshnirmal, S.; Thilagaraj, P.; Rahaman, S.A.; Jegankumar, R. Erosion risk assessment through morphometric indices for prioritisation of Arjuna watershed using ALOS-PALSAR DEM. Model. Earth Syst. Environ. 2019, 1–18. [Google Scholar] [CrossRef]
- Amiri, M.; Pourghasemi, H.R.; Arabameri, A.; Vazirzadeh, A.; Yousefi, H.; Kafaei, S. Prioritization of Flood Inundation of Maharloo Watershed in Iran Using Morphometric Parameters Analysis and TOPSIS MCDM Model. Spatial Model. GIS R Earth Environ. Sci. 2019, 371–390. [Google Scholar] [CrossRef]
- Biswas, S.; Sudhakar, S.; Desai, V.R. Prioritisation of sub-watersheds based on morphometric analysis of drainage basin: A remote sensing and GIS approach. J. Indian Soc Remote Sens 1999, 27, 155–166. [Google Scholar] [CrossRef]
- Farhan, Y.; Anaba, O. A Remote Sensing and GIS Approach for Prioritization of Wadi Shueib Mini-Watersheds (Central Jordan) Based on Morphometric and Soil Erosion Susceptibility Analysis. J. Geogr. Inf. Syst. 2016, 8, 1–19. [Google Scholar] [CrossRef]
- Rahaman, S.A.; Ajeez, S.A.; Aruchamy, S.; Jegankumar, R. Prioritization of Sub Watershed Based on Morphometric Characteristics Using Fuzzy Analytical Hierarchy Process and Geographical Information System—A Study of Kallar Watershed, Tamil Nadu. Aquat. Procedia 2015, 4, 1322–1330. [Google Scholar] [CrossRef]
- Balasubramani, K.; Gomathi, M.; Bhaskaran, G.; Kumaraswamy, K. GIS-based spatial multi-criteria approach for characterization and prioritization of micro-watersheds: A case study of semi-arid watershed, South India. Appl. Geomat. 2019, 1–19. [Google Scholar] [CrossRef]
- Meshram, S.G.; Alvandi, E.; Singh, V.P.; Meshram, C. Comparison of AHP and fuzzy AHP models for prioritization of watersheds. Soft Comput. 2019, 1–11. [Google Scholar] [CrossRef]
- Aouragh, H.M.; Essahlaoui, A. A TOPSIS approach-based morphometric analysis for sub-watersheds prioritization of high Oum Er-Rbia basin, Morocco. Spat. Inf. Res. 2018, 26, 187–202. [Google Scholar] [CrossRef]
- EOC GeoserviceTDM90. Available online: https://download.geoservice.dlr.de/TDM90/ (accessed on 13 June 2019).
- Horton, R.E. Erosional development of streams and their drainage basins; hydro-physical approach to quantitative morphology. GSA Bulletin 1945, 56, 275–370. [Google Scholar] [CrossRef]
- Strahler, A.N. Quantitative analysis of watershed geomorphology. Transactions of the American Geophysical Union 1957, 38, 913–920. [Google Scholar] [CrossRef]
- Hwang, C.L.; Yoon, K. Multiple attribute decision making methods and applications; Springer: Heidelberg, Germany, 1981. [Google Scholar] [CrossRef]
- Saaty, T.L. A scaling method for priorities in hierarchical structures. J. Math. Pshychol. 1977, 15, 234–281. [Google Scholar] [CrossRef]
- R statistical software. Available online: https://cran.r-project.org/web/packages/ahp/index.html (accessed on 13 June 2019).
- MCDM Package. Available online: https://cran.r-project.org/web/packages/MCDM/MCDM.pdf (accessed on 13 June 2019).
Morphometric Parameters | Formula/Definition | Unit | References |
---|---|---|---|
Bifurcation Ratio (Rb) | Dimensionless | [11] | |
Length of overland flow (Lo) | km | [12] | |
Drainage density (Dd) | km km-2 | [12] | |
Stream frequency (Fs) | km-2 | [12] | |
Drainage texture ratio (T) | km-1 | [12] | |
Form factor (Rf) | Dimensionless | [12] | |
Circulatory ratio (Rc) | Dimensionless | [11] | |
Elongation ratio (Re) | Dimensionless | [12] |
Criteria | Rb | Fs | Dd | T | Lo | Rc | Rf | Re |
---|---|---|---|---|---|---|---|---|
Criteria Type | Positive | Positive | Positive | Positive | Positive | Negative | Negative | Negative |
Criteria weights (AHP) | 0.163 | 0.305 | 0.224 | 0.099 | 0.121 | 0.041 | 0.03 | 0.017 |
MSW | Rb | Fs | Dd | T | Lo | Rc | Rf | Re | Ci+ | R* | Priority Index |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2.83 | 0.51 | 1.25 | 0.41 | 0.4 | 0.34 | 0.38 | 0.95 | 0.249 | 11 | High |
2 | 3.25 | 0.6 | 1.32 | 0.39 | 0.38 | 0.26 | 0.39 | 0.88 | 0.401 | 4 | Very High |
3 | 5.25 | 0.52 | 1.17 | 0.54 | 0.43 | 0.35 | 0.35 | 1.17 | 0.272 | 10 | High |
4 | 3.39 | 0.69 | 1.38 | 0.61 | 0.36 | 0.17 | 0.33 | 1.4 | 0.273 | 9 | High |
5 | 4.17 | 0.68 | 1.28 | 0.58 | 0.39 | 0.26 | 0.36 | 1.13 | 0.183 | 15 | Moderate |
6 | 4.17 | 0.65 | 1.3 | 0.61 | 0.38 | 0.36 | 0.36 | 1.06 | 0.098 | 18 | Moderate |
7 | 3 | 0.68 | 1.26 | 0.68 | 0.4 | 0.31 | 0.35 | 1.19 | 0.113 | 16 | Moderate |
8 | 5 | 0.6 | 1.3 | 0.57 | 0.38 | 0.27 | 0.35 | 1.22 | 0.096 | 21 | Low |
9 | 6.5 | 0.48 | 1.44 | 0.29 | 0.35 | 0.16 | 0.37 | 1.04 | 0.288 | 8 | High |
10 | 5 | 0.48 | 1.27 | 0.32 | 0.39 | 0.25 | 0.38 | 0.94 | 0.459 | 1 | Very High |
11 | 8 | 0.48 | 1.24 | 0.38 | 0.4 | 0.41 | 0.39 | 0.86 | 0.385 | 5 | Very High |
12 | 4 | 0.43 | 0.78 | 0.49 | 0.64 | 0.34 | 0.34 | 1.31 | 0.326 | 7 | High |
13 | 3.17 | 0.91 | 1.88 | 0.89 | 0.27 | 0.38 | 0.36 | 1.09 | 0.213 | 13 | Moderate |
14 | 4.17 | 0.69 | 1.42 | 0.58 | 0.35 | 0.3 | 0.37 | 1.04 | 0.096 | 19 | Low |
15 | 3.17 | 0.62 | 1.14 | 0.51 | 0.44 | 0.37 | 0.38 | 0.94 | 0.098 | 17 | Moderate |
16 | 4 | 0.62 | 1.4 | 0.35 | 0.36 | 0.13 | 0.36 | 1.06 | 0.096 | 20 | Low |
17 | 3 | 0.63 | 1.28 | 0.37 | 0.39 | 0.25 | 0.39 | 0.83 | 0.357 | 6 | Very High |
18 | 3.25 | 0.59 | 1.43 | 0.56 | 0.35 | 0.16 | 0.33 | 1.53 | 0.458 | 2 | Very High |
19 | 3.5 | 0.49 | 1.32 | 0.34 | 0.38 | 0.19 | 0.36 | 1.1 | 0.445 | 3 | Very High |
20 | 3.76 | 0.56 | 1.33 | 0.56 | 0.38 | 0.17 | 0.32 | 1.56 | 0.240 | 12 | High |
21 | 3.3 | 0.62 | 1.37 | 0.66 | 0.37 | 0.1 | 0.29 | 2.1 | 0.192 | 14 | Moderate |
22 | 4.06 | 0.59 | 1.38 | 0.72 | 0.36 | 0.11 | 0.29 | 2.2 | 0.088 | 23 | Low |
23 | 2.67 | 0.54 | 1.31 | 0.56 | 0.38 | 0.05 | 0.27 | 2.68 | 0.092 | 22 | Low |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nitheshnirmal, S.; Bhardwaj, A.; Dineshkumar, C.; Rahaman, S.A. Prioritization of Erosion Prone Micro-Watersheds Using Morphometric Analysis coupled with Multi-Criteria Decision Making. Proceedings 2019, 24, 11. https://doi.org/10.3390/IECG2019-06207
Nitheshnirmal S, Bhardwaj A, Dineshkumar C, Rahaman SA. Prioritization of Erosion Prone Micro-Watersheds Using Morphometric Analysis coupled with Multi-Criteria Decision Making. Proceedings. 2019; 24(1):11. https://doi.org/10.3390/IECG2019-06207
Chicago/Turabian StyleNitheshnirmal, S., Ashutosh Bhardwaj, C. Dineshkumar, and S. Abdul Rahaman. 2019. "Prioritization of Erosion Prone Micro-Watersheds Using Morphometric Analysis coupled with Multi-Criteria Decision Making" Proceedings 24, no. 1: 11. https://doi.org/10.3390/IECG2019-06207
APA StyleNitheshnirmal, S., Bhardwaj, A., Dineshkumar, C., & Rahaman, S. A. (2019). Prioritization of Erosion Prone Micro-Watersheds Using Morphometric Analysis coupled with Multi-Criteria Decision Making. Proceedings, 24(1), 11. https://doi.org/10.3390/IECG2019-06207