Non-Equilibrium Phenomena in Quantum Systems, Criticality and Metastability †
Abstract
:1. Phase Transition in Dissipative Quantum Many Body Systems
2. Decoherence and Quantum Bistable Systems
3. Dynamics of Solitons in Long Josephson Junctions under Noisy Environment
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Shapere, A.; Wilczek, F. (Eds.) Geometric Phases in Physics; World Scientific: Singapore, 1989. [Google Scholar]
- Carollo, A.C.M.; Pachos, J.K. Geometric Phases and Criticality in Spin-Chain Systems. Phys. Rev. Lett. 2005, 95, 157203. [Google Scholar] [CrossRef] [PubMed]
- Pachos, J.K.; Carollo, A.C. Geometric phases and criticality in spin systems. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2006, 364, 3463–3476. [Google Scholar] [CrossRef] [PubMed]
- Campos Venuti, L.; Zanardi, P. Quantum Critical Scaling of the Geometric Tensors. Phys. Rev. Lett. 2007, 99, 095701. [Google Scholar] [CrossRef] [PubMed]
- Prosen, T.; Pižorn, I. Quantum Phase Transition in a Far-from-Equilibrium Steady State of an XY Spin Chain. Phys. Rev. Lett. 2008, 101, 105701. [Google Scholar] [CrossRef]
- Dalla Torre, E.G.; Demler, E.; Giamarchi, T.; Altman, E. Quantum critical states and phase transitions in the presence of non-equilibrium noise. Nat. Phys. 2010, 6, 806–810. [Google Scholar] [CrossRef]
- Diehl, S.; Tomadin, A.; Micheli, A.; Fazio, R.; Zoller, P. Dynamical Phase Transitions and Instabilities in Open Atomic Many-Body Systems. Phys. Rev. Lett. 2010, 105, 015702. [Google Scholar] [CrossRef]
- Uhlmann, A. Parallel transport and “quantum holonomy” along density operators. Rep. Math. Phys. 1986, 24, 229–240. [Google Scholar] [CrossRef]
- Matsumoto, K. A Geometrical Approach to Quantum Estimation Theory. Ph.D. Thesis, University of Tokyo, Tokyo, Japan, 1997. [Google Scholar]
- Zanardi, P.; Giorda, P.; Cozzini, M. Information-Theoretic Differential Geometry of Quantum Phase Transitions. Phys. Rev. Lett. 2007, 99, 100603. [Google Scholar] [CrossRef]
- Banchi, L.; Giorda, P.; Zanardi, P. Quantum information-geometry of dissipative quantum phase transitions. Phys. Rev. E 2014, 89, 022102. [Google Scholar] [CrossRef]
- Ragy, S.; Jarzyna, M.; Demkowicz-Dobrzański, R. Compatibility in multiparameter quantum metrology. Phys. Rev. A 2016, 94, 052108. [Google Scholar] [CrossRef]
- Carollo, A.; Spagnolo, B.; Valenti, D. Uhlmann curvature in dissipative phase transitions. Sci. Rep. 2018, 8, 9852. [Google Scholar] [CrossRef] [PubMed]
- Carollo, A.; Spagnolo, B.; Valenti, D. Symmetric Logarithmic Derivative of Fermionic Gaussian States. Entropy 2018, 20, 485. [Google Scholar] [CrossRef]
- Bernevig, B.A.; Hughes, T.L. Topological Insulators and Topological Superconductors; Princeton University Press: Princeton, NJ, USA; Princeton University Press: Oxford, UK, 2013. [Google Scholar]
- Leonforte, L.; Valenti, D.; Spagnolo, B.; Carollo, A. Uhlmann number in translational invariant systems. arXiv 2018, arXiv:1806.08592. [Google Scholar] [CrossRef]
- Bascone, F.; Leonforte, L.; Spagnolo, B.; Valenti, D.; Carollo, A. Finite temperature geometric properties of the Kitaev honeycomb model. arXiv 2018, arXiv:1810.04149. [Google Scholar] [CrossRef]
- Caldeira, A.O.; Leggett, A.J. Quantum tunnelling in a dissipative system. Ann. Phys. 1983, 149, 374–456. [Google Scholar] [CrossRef]
- Weiss, U. Quantum Dissipative Systems; World Scientific: Singapore, 2012. [Google Scholar] [CrossRef]
- Magazzù, L.; Valenti, D.; Carollo, A.; Spagnolo, B. Multi-state quantum dissipative dynamics in sub-ohmic environment: The strong coupling regime. Entropy 2015, 17, 2341–2354. [Google Scholar] [CrossRef]
- Magazzù, L.; Carollo, A.; Spagnolo, B.; Valenti, D. Quantum dissipative dynamics of a bistable system in the sub-Ohmic to super-Ohmic regime. J. Stat. Mech. Theory Exp. 2016, 2016, 54016. [Google Scholar] [CrossRef]
- Spagnolo, B.; Carollo, A.; Valenti, D. Enhancing Metastability by Dissipation and Driving in an Asymmetric Bistable Quantum System. Entropy 2018, 20, 226. [Google Scholar] [CrossRef]
- Valenti, D.; Carollo, A.; Spagnolo, B. Stabilizing effect of driving and dissipation on quantum metastable states. Phys. Rev. A 2018, 97, 042109. [Google Scholar] [CrossRef]
- Spagnolo, B.; Carollo, A.; Valenti, D. Stabilization by dissipation and stochastic resonant activation in quantum metastable systems. Eur. Phys. J. Spec. Top. 2018, 227, 379–420. [Google Scholar] [CrossRef]
- Feynman, R.P.; Vernon, F.L., Jr. The theory of a general quantum system interacting with a linear dissipative system. Ann. Phys. 1963, 24, 118–173. [Google Scholar] [CrossRef]
- Thorwart, M.; Grifoni, M.; Hanggi, P. Strong coupling theory for driven tunneling and vibrational relaxation. Phys. Rev. Lett. 2000, 85, 860–863. [Google Scholar] [CrossRef] [PubMed]
- Guarcello, C.; Valenti, D.; Carollo, A.; Spagnolo, B. Effects of Lévy noise on the dynamics of sine-Gordon solitons in long Josephson junctions. J. Stat. Mech. Theory Exp. 2016, 2016, 054012. [Google Scholar] [CrossRef]
- Guarcello, C.; Valenti, D.; Carollo, A.; Spagnolo, B. Stabilization effects of dichotomous noise on the lifetime of the superconducting state in a long Josephson junction. Entropy 2015, 17, 2862–2875. [Google Scholar] [CrossRef]
- Spagnolo, B.; Valenti, D.; Guarcello, C.; Carollo, A.; Persano Adorno, D.; Spezia, S.; Pizzolato, N.; Di Paola, B. Noise-induced effects in nonlinear relaxation of condensed matter systems. Chaos Solitons Fractals 2015, 81, 412–424. [Google Scholar] [CrossRef]
- Spagnolo, B.; Guarcello, C.; Magazzù, L.; Carollo, A.; Persano Adorno, D.; Valenti, D. Nonlinear Relaxation Phenomena in Metastable Condensed Matter Systems. Entropy 2016, 19, 20. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carollo, A.; Spagnolo, B.; Valenti, D. Non-Equilibrium Phenomena in Quantum Systems, Criticality and Metastability. Proceedings 2019, 12, 43. https://doi.org/10.3390/proceedings2019012043
Carollo A, Spagnolo B, Valenti D. Non-Equilibrium Phenomena in Quantum Systems, Criticality and Metastability. Proceedings. 2019; 12(1):43. https://doi.org/10.3390/proceedings2019012043
Chicago/Turabian StyleCarollo, Angelo, Bernardo Spagnolo, and Davide Valenti. 2019. "Non-Equilibrium Phenomena in Quantum Systems, Criticality and Metastability" Proceedings 12, no. 1: 43. https://doi.org/10.3390/proceedings2019012043
APA StyleCarollo, A., Spagnolo, B., & Valenti, D. (2019). Non-Equilibrium Phenomena in Quantum Systems, Criticality and Metastability. Proceedings, 12(1), 43. https://doi.org/10.3390/proceedings2019012043