Evaluation of Silicon Nanonet Field Effect Transistor as Photodiodes †
Abstract
:1. Introduction
2. Methods
2.1. FET Fabrication
2.2. FET Characterization
3. Results and Discussion
3.1. Characterization of the Si nanonet FETs
3.2. Evalutation of the Si Nanonet FETs as Photodiodes
3.3. Long Term Stability of the Si Nanonet FETs
4. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Dasgupta, N.P.; Sun, J.; Liu, C.; Brittman, S.; Andrews, S.C.; Lim, J.; Gao, H.; Yan, R.; Yang, P. Semiconductor nanowires—Synthesis, characterization, and applications. Adv. Mater. 2014, 26, 2137–2184. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Ning, Y. Silicon nanowire biosensor and its applications in disease diagnostics: A review. Anal. Chim. Acta 2012, 749, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Garnett, E.; Yang, P. Light trapping in silicon nanowire solar cells. Nano Lett. 2010, 10, 1082–1087. [Google Scholar] [CrossRef] [PubMed]
- Chan, C.K.; Peng, H.; Liu, G.; McIlwrath, K.; Zhang, X.F.; Huggins, R.A.; Cui, Y. High-performance lithium battery anodes using silicon nanowires. Nat. Nanotechnol. 2008, 3, 31–35. [Google Scholar] [CrossRef] [PubMed]
- Serre, P.; Mongillo, M.; Periwal, P.; Baron, T.; Ternon, C. Percolating silicon nanowire networks with highly reproducible electrical properties. Nanotechnology 2015. [Google Scholar] [CrossRef] [PubMed]
- Gruner, G. Carbon nanotube films for transparent and plastic electronics. J. Mater. Chem. 2006, 16, 3533–3539. [Google Scholar] [CrossRef]
- Dong, Q.; Zafir, M.; Nasira, M.; Pumera, M. Semi-conducting single-walled carbon nanotubes are detrimental when compared to metallic single-walled carbon nanotubes for electrochemical applications. Phys. Chem. Chem. Phys. 2017, 19, 27320–27325. [Google Scholar] [CrossRef] [PubMed]
- Legallais, M.; Nguyen, T.T.T.; Mouis, M.; Salem, B.; Robin, E.; Chenevier, P.; Ternon, C. An innovative large scale integration of silicon nanowire-based field effect transistors. Solid-State Electron. 2017; in press. [Google Scholar]
- Ternon, C.; Serre, P.; Lebrun, J.; Brouzet, V.; Legallais, M.; David, S.; Luciani, T.; Pascal, C.; Baron, T.; Missiaen, J. Low temperature processing to form oxidation insensitive electrical contact at silicon nanowire/nanowire junctions. Adv. Electron. Mater. 2015. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kayaharman, M.; Legallais, M.; Ternon, C.; Park, S.; Salem, B.; Irannejad, M.; Abdel-Rahman, E.; Yavuz, M. Evaluation of Silicon Nanonet Field Effect Transistor as Photodiodes. Proceedings 2018, 2, 124. https://doi.org/10.3390/ecsa-4-04925
Kayaharman M, Legallais M, Ternon C, Park S, Salem B, Irannejad M, Abdel-Rahman E, Yavuz M. Evaluation of Silicon Nanonet Field Effect Transistor as Photodiodes. Proceedings. 2018; 2(3):124. https://doi.org/10.3390/ecsa-4-04925
Chicago/Turabian StyleKayaharman, Muhammed, Maxime Legallais, Celine Ternon, Sangtak Park, Bassem Salem, Mehrdad Irannejad, Eihab Abdel-Rahman, and Mustafa Yavuz. 2018. "Evaluation of Silicon Nanonet Field Effect Transistor as Photodiodes" Proceedings 2, no. 3: 124. https://doi.org/10.3390/ecsa-4-04925
APA StyleKayaharman, M., Legallais, M., Ternon, C., Park, S., Salem, B., Irannejad, M., Abdel-Rahman, E., & Yavuz, M. (2018). Evaluation of Silicon Nanonet Field Effect Transistor as Photodiodes. Proceedings, 2(3), 124. https://doi.org/10.3390/ecsa-4-04925