Spearman Correlation between the NDVI and Quercus Airborne Pollen in the SW of the Iberian Peninsula †
Abstract
:1. Introduction
2. Material and Methods
2.1. Sampling Site
2.2. Space Images NDVI NOAA/ AVHRR
2.3. Cartography
2.4. Statistical Analysis
3. Results
4. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- García-Mozo, H.; Oteros, J.A.; Galán, C. Impact of land cover changes and climate on the main airborne pollen types in Southern Spain. Sci. Total Environ. 2016, 548–549, 221–228. [Google Scholar] [CrossRef] [PubMed]
- Gage, S.H.; Isard, S.A.; Colunga-G, M. Ecological scaling of aerobiological dispersal processes. Agric. For. Meteorol. 1999, 97, 249–261. [Google Scholar] [CrossRef]
- Hogda, K.A.; Karlsen, S.R.; Solheim, I.; Tommervik, H.; Ramfjord, H. The start dates of birch pollen seasons in Fennoscandia studied by NOAA AVHRR NDVI data. Int. Geosci. Remote Sens. Symp. (IGARSS) 2002, 6, 3299–3301. [Google Scholar]
- White, M.A.; Nemani, R.R. Real-time monitoring and short-term forecasting of land surface phenology. Remote Sens. Environ. 2006, 104, 43–49. [Google Scholar] [CrossRef]
- Barbosa, H.A.; Huete, A.R.; Baethgen, W.E. A 20-year study of NDVI variability over the Northeast Region of Brazil. J. Arid Environ. 2006, 67, 288–307. [Google Scholar] [CrossRef]
- Karlsen, S.R.; Ramfjord, H.; Høgda, K.A.; Johansen, B.; Danks, F.S.; Brobakk, T.E. A satellite-based map of onset of birch (Betula) flowering in Norway. Aerobiologia 2009, 25, 15–25. [Google Scholar] [CrossRef]
- Skjøth, C.A.; Ørby, P.V.; Becker, T.; Geels, C.; Schlünssen, V.; Sigsgaard, T.; Bønløkke, J.H.; Sommer, J.; Søgaard, P.; Hertel, O. Identifying urban sources as cause of elevated grass pollen concentrations using GIS and remote sensing. Biogeosciences 2013, 10, 541–554. [Google Scholar] [CrossRef]
- Maya-Manzano, J.M.; Fernández-Rodríguez, S.; Smith, M.; Tormo-Molina, R.; Reynolds, A.; Silva-Palacios, I.; Gonzalo-Garijo, Á.; Sadyś, M. Airborne Quercus pollen in SW Spain: Identifying favourable conditions for atmospheric transport and potential source areas. Sci. Total Environ. 2016, 571, 1037–1047. [Google Scholar] [CrossRef] [PubMed]
- Morillo, J.; Espejo, A.M. Determinación de la superficie ocupada por las áres adhesada en Extremadura. Ed. La agricultura y la ganadería extremeñas en 2007. Junta de Extremadura. 2008. Informe 2007. La agricultura y la ganadería extremeña. Facultad de Ciencias Económicas Empresariales. Escuela de Ingenierías Agrarias. Universidad de Extremadura. Servicio de Publicaciones de la Universidad de Extremadura. Caja de Badajoz. Badajoz (Extremadura).
- Ibáñez, J.J.; Gómez, R.P. Diversity of Soil-Landscape Relationships: State of the Art and Future Challenges. In Geopedology: An Integration of Geomorphology and Pedology for Soil and Landscape Studies; Zinck, J.A., Metternicht, G., Bocco, G., del Valle, H.F., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 183–191. [Google Scholar]
- Wang, J.; Zhang, Z.; Greimann, B.; Huang, V. Application and evaluation of the HEC-RAS—Riparian vegetation simulation module to the Sacramento River. Ecol. Model. 2018, 368, 158–168. [Google Scholar] [CrossRef]
- Maya-Manzano, J.M.; Tormo-Molina, R.; Fernández-Rodríguez, S.; Silva-Palacios, I.; Gonzalo-Garijo, Á. Distribution of ornamental urban trees and their influence on airborne pollen. Landsc. Urban Plan. 2017, 157, 434–446. [Google Scholar] [CrossRef]
- Hirst, J.M. An automatic volumetric spore trap. Ann. Appl. Biol. 1952, 39, 257–265. [Google Scholar] [CrossRef]
- Fernández-Rodríguez, S.; Durán-Barroso, P.; Silva-Palacios, I.; Tormo-Molina, R.; Maya-Manzano, J.M.; Gonzalo-Garijo, Á. Quercus long-term pollen season trends in the southwest of the Iberian Peninsula. Process Saf. Environ. Prot. 2016, 101, 152–159. [Google Scholar] [CrossRef]
- Nilsson, S.; Persson, S. Tree pollen spectra in the Stockholm region (sweden), 1973–1980. Grana 1981, 20, 179–182. [Google Scholar] [CrossRef]
50 Km | 25 Km | 15 Km | |||||
---|---|---|---|---|---|---|---|
Year | LAGS | Spearman Correlation | Spearman p-Value | Spearman Correlation | Spearman p-Value | Spearman Correlation | Spearman p-Value |
1994 | 9 | 0.3510 | 0.0080 | 0.3220 | 0.0160 | 0.3120 | 0.0190 |
1995 | 8 | 0.5320 | <0.0001 | 0.3490 | 0.0100 | 0.2870 | 0.0360 |
1996 | 1 | 0.2070 | 0.1380 | 0.1920 | 0.1690 | 0.1450 | 0.3000 |
1997 | 1 | 0.5930 | <0.0001 | 0.6340 | <0.0001 | 0.5760 | <0.0001 |
1998 | 10 | 0.3910 | 0.0010 | 0.3810 | 0.0020 | 0.0970 | 0.4390 |
1999 | 1 | 0.0900 | 0.5200 | 0.1480 | 0.2890 | 0.0830 | 0.5550 |
2000 | 12 | 0.2170 | 0.1040 | 0.2200 | 0.0460 | 0.1480 | 0.2710 |
2001 | 4 | 0.5210 | <0.0001 | 0.5060 | <0.0001 | 0.5000 | <0.0001 |
2002 | 1 | 0.4280 | 0.0010 | 0.5330 | <0.0001 | 0.3940 | 0.0020 |
2003 | 11 | 0.3060 | 0.0060 | 0.3000 | 0.0070 | 0.2550 | 0.0220 |
2004 | 4 | 0.2820 | 0.0410 | 0.4060 | 0.0030 | 0.3570 | 0.0090 |
2005 | 12 | 0.4820 | 0.0000 | 0.5210 | <0.0001 | 0.3510 | 0.0060 |
2006 | 15 | 0.2290 | 0.0470 | 0.1080 | 0.3510 | 0.1030 | 0.3770 |
2007 | 13 | 0.3190 | 0.0060 | 0.3370 | 0.0040 | 0.3220 | 0.0060 |
2008 | 7 | 0.4370 | 0.0010 | 0.4400 | 0.0010 | 0.4160 | 0.0020 |
2009 | 6 | 0.2570 | 0.0460 | 0.2580 | 0.0450 | 0.2800 | 0.0290 |
2010 | 9 | 0.2520 | 0.0620 | 0.3260 | 0.0150 | 0.3500 | 0.0080 |
2011 | 1 | 0.6080 | 0.0000 | 0.6060 | 0.0000 | 0.5950 | 0.0000 |
2012 | 13 | 0.0350 | 0.7580 | -0.0480 | 0.6740 | -0.2030 | 0.0720 |
2013 | 9 | 0.4690 | 0.0000 | 0.4790 | 0.0000 | 0.4490 | 0.0010 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
González-Naharro, R.; Quirós, E.; Fernández-Rodríguez, S.; Silva-Palacios, I.; Tormo-Molina, R.; Maya-Manzano, J.M.; Monroy-Colin, A.; Pecero-Casimiro, R.; Gonzalo-Garijo, Á. Spearman Correlation between the NDVI and Quercus Airborne Pollen in the SW of the Iberian Peninsula. Proceedings 2018, 2, 1519. https://doi.org/10.3390/proceedings2201519
González-Naharro R, Quirós E, Fernández-Rodríguez S, Silva-Palacios I, Tormo-Molina R, Maya-Manzano JM, Monroy-Colin A, Pecero-Casimiro R, Gonzalo-Garijo Á. Spearman Correlation between the NDVI and Quercus Airborne Pollen in the SW of the Iberian Peninsula. Proceedings. 2018; 2(20):1519. https://doi.org/10.3390/proceedings2201519
Chicago/Turabian StyleGonzález-Naharro, Rocío, Elia Quirós, Santiago Fernández-Rodríguez, Inmaculada Silva-Palacios, Rafael Tormo-Molina, José María Maya-Manzano, Alejandro Monroy-Colin, Raúl Pecero-Casimiro, and Ángela Gonzalo-Garijo. 2018. "Spearman Correlation between the NDVI and Quercus Airborne Pollen in the SW of the Iberian Peninsula" Proceedings 2, no. 20: 1519. https://doi.org/10.3390/proceedings2201519
APA StyleGonzález-Naharro, R., Quirós, E., Fernández-Rodríguez, S., Silva-Palacios, I., Tormo-Molina, R., Maya-Manzano, J. M., Monroy-Colin, A., Pecero-Casimiro, R., & Gonzalo-Garijo, Á. (2018). Spearman Correlation between the NDVI and Quercus Airborne Pollen in the SW of the Iberian Peninsula. Proceedings, 2(20), 1519. https://doi.org/10.3390/proceedings2201519