Optimized Batch Process for Organic MEMS Devices †
Abstract
:1. Introduction
2. Fabrication Process
3. Results and Discussion
4. Conclusions
Acknowledgments
References
- Torah, R.; Lawrie-Ashton, J.; Li, Y.; Arumugam, S.; Sodano, H.; Beeby, S. Energy-harvesting materials for smart fabrics and textiles. MRS Bull. 2018, 43, 214–219. [Google Scholar] [CrossRef]
- Gautschi, G. Piezoelectric Materials for Sensors. In Piezoelectric Sensorics; Springer: Berlin/Heidelberg, Germany, 2002; pp. 13–50. [Google Scholar]
- Ababneh, A.; Schmid, U.; Hernando, J.; Sánchez-Rojas, J.L.; Seidel, H. The influence of sputter deposition parameters on piezoelectric and mechanical properties of AlN thin films. Mater. Sci. Eng. B 2010, 172, 253–258. [Google Scholar] [CrossRef]
- Schneider, M.; Bittner, A.; Schmid, U. Improved Piezoelectric Constants of Sputtered Aluminium Nitride Thin Films by Pre-conditioning of the Silicon Surface. J. Phys. D Appl. Phys. 2015, 48, 405301. [Google Scholar] [CrossRef]
- Bruls, R.J.; Hintzen, H.T.; de With, G.; Metselaar, R. The temperature dependence of the Young’s modulus of MgSiN2, AlN and Si3N4. J. Eur. Ceram. Sci. 2001, 21, 263–268. [Google Scholar] [CrossRef]
- Yildirim, Y.A.; Toprak, A.; Tigli, O. Piezoelectric Membrane Actuators for Micropump Applications Using PVDF-TrFE. J. Microelectromechan. Syst. 2018, 27, 86–94. [Google Scholar] [CrossRef]
- Oh, S.R.; Yao, K.; Tay, F.E.H. Fabrication of piezoelectric P(VDF-TrFE) microcantilevers by wafer-level surface micromachining. J. Micromechan. Microeng. 2013, 23, 095023. [Google Scholar] [CrossRef]
- Toprak, A.; Tigli, O. MEMS Scale PVDF-TrFE-Based Piezoelectric Energy Harvesters. J. Microelectromechan. Syst. 2015, 24, 1989–1997. [Google Scholar] [CrossRef]
Young’s Modulus Y | 2 GPa |
Relative Permittivity εr | 14 |
Remanent Polarization Pr | 6.2 µC/cm2 |
Coercive Field Ec | ±50 V/µm |
Piezoelectric Coefficient d33 | −32 pm/V |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hafner, J.; Teuschel, M.; Schrattenholzer, J.; Schneider, M.; Schmid, U. Optimized Batch Process for Organic MEMS Devices. Proceedings 2018, 2, 904. https://doi.org/10.3390/proceedings2130904
Hafner J, Teuschel M, Schrattenholzer J, Schneider M, Schmid U. Optimized Batch Process for Organic MEMS Devices. Proceedings. 2018; 2(13):904. https://doi.org/10.3390/proceedings2130904
Chicago/Turabian StyleHafner, Jonas, Marco Teuschel, Jürgen Schrattenholzer, Michael Schneider, and Ulrich Schmid. 2018. "Optimized Batch Process for Organic MEMS Devices" Proceedings 2, no. 13: 904. https://doi.org/10.3390/proceedings2130904
APA StyleHafner, J., Teuschel, M., Schrattenholzer, J., Schneider, M., & Schmid, U. (2018). Optimized Batch Process for Organic MEMS Devices. Proceedings, 2(13), 904. https://doi.org/10.3390/proceedings2130904