Certain Sharp Coefficient Results on a Subclass of Starlike Functions Defined by the Quotient of Analytic Functions
Abstract
:1. Introduction and Definitions
2. A Set of Lemmas
3. Main Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Carathéodory, C. Über den Variabilitatsbereich der Koeffizienten von Potenzreihen, die gegebene werte nicht annehmen. Math. Ann. 1907, 64, 95–115. [Google Scholar] [CrossRef] [Green Version]
- Goodman, A.W. Univalent Functions; Mariner: Tampa, FL, USA, 1983. [Google Scholar]
- Ji, E.K.; Kwang, H.S. A regularity of split-biquaternionic-valued functions in Clifford analysis. J. Nonlinear Sci. Appl. 2016, 9, 6302–6311. [Google Scholar]
- Ji, E.K.; Kwang, H.S. Hyper-conjugate harmonic function of conic regular functions in conic quaternions. East Asian Math. J. 2015, 31, 127–134. [Google Scholar]
- Liu, Q.; Dai, B.; Katib, I.; Alhamami, M.A. Financial accounting measurement model based on numerical analysis of rigid normal differential equation and rigid generalised functional equation. Appl. Math. Nonlinear Sci. 2022, 7, 541–548. [Google Scholar] [CrossRef]
- Sun, R.; Sharaf, S.; Ali, B. Human gait modelling and tracking based on motion functionalisation. Appl. Math. Nonlinear Sci. 2022, 7, 21–30. [Google Scholar] [CrossRef]
- An, X.; Yang, R.; Alghazzawi, D.; Joseph, N. Mathematical function data model analysis and synthesis system based on short-term human movement. Appl. Math. Nonlinear Sci. 2022, 7, 49–58. [Google Scholar] [CrossRef]
- Silverman, H. Convex and starlike criteria. Int. J. Math. Math. Sci. 1999, 22, 75–79. [Google Scholar] [CrossRef] [Green Version]
- Obradović, M.; Tuneski, N. On the starlike criteria defined by Silverman. Zesz. Nauk. Politech. Rzesz. Mat. 2000, 24, 59–64. [Google Scholar]
- Park, J.H.; Kumar, V.; Cho, N.E. Sharp coefficient bounds for the quotient of analytic functions. Kyungpook Math. J. 2018, 58, 231–242. [Google Scholar] [CrossRef]
- Rǎducanu, D. Coefficient estimates for a subclass of starlike functions. Mathematics 2020, 8, 1646. [Google Scholar] [CrossRef]
- Tuneski, N. On the quotient of the representations of convexity and starlikeness. Math. Nachrichten 2003, 248, 200–203. [Google Scholar] [CrossRef]
- Tuneski, N. On a criteria for starlikeness of analytic functions. Integral Transform. Spec. Funct. 2003, 14, 263–270. [Google Scholar] [CrossRef]
- Singh, V.; Nikola, T. On criteria for starlikeness and convexity of analytic functions. Acta Math. Sci. 2004, 24, 597–602. [Google Scholar] [CrossRef]
- Pommerenke, C. On the coefficients and Hankel determinants of univalent functions. J. Lond. Math. Soc. 1966, 1, 111–122. [Google Scholar] [CrossRef]
- Pommerenke, C. On the Hankel determinants of univalent functions. Mathematika 1967, 14, 108–112. [Google Scholar] [CrossRef]
- Dienes, P. The Taylor Series: An Introduction to the Theory of Functions of a Complex Variable; Dover: New York, NY, USA, 1957. [Google Scholar]
- Srivastava, H.M.; Kaur, G.; Singh, G. Estimates of the fourth Hankel determinant for a class of analytic functions with bounded turnings involving cardioid domains. J. Nonlinear Convex Anal. 2021, 22, 511–526. [Google Scholar]
- Arif, M.; Barukab, O.M.; Khan, S.A.; Abbas, M. The sharp bounds of Hankel determinants for the families of three-leaf-type analytic functions. Fractal Fract. 2022, 6, 291. [Google Scholar] [CrossRef]
- Kowalczyk, B.; Lecko, A.; Sim, Y.J. The sharp bound of the Hankel determinant of the third kind for convex functions. Bull. Aust. Math. Soc. 2018, 97, 435–445. [Google Scholar] [CrossRef]
- Lecko, A.; Sim, Y.J.; Śmiarowska, B. The sharp bound of the Hankel determinant of the third kind for starlike functions of order 1/2. Complex Anal. Oper. Theory 2019, 13, 2231–2238. [Google Scholar] [CrossRef] [Green Version]
- Shi, L.; Shutaywi, M.; Alreshidi, N.; Arif, M.; Ghufran, M.S. The sharp bounds of the third-order Hankel determinant for certain analytic functions associated with an eight-shaped domain. Fractal Fract. 2022, 6, 223. [Google Scholar] [CrossRef]
- Shi, L.; Srivastava, H.M.; Rafiq, A.; Arif, M.; Ihsan, M. Results on Hankel determinants for the inverse of certain analytic functions subordinated to the exponential function. Mathematics 2022, 10, 3429. [Google Scholar] [CrossRef]
- Al-shbeil, I.; Gong, J.; Khan, S.; Khan, N.; Khan, A.; Khan, M.F.; Goswami, A. Hankel and symmetric Toeplitz determinants for a new subclass of q-starlike functions. Fractal Fract. 2022, 6, 658. [Google Scholar] [CrossRef]
- Wang, Z.-G.; Raza, M.; Arif, M.; Ahmad, K. On the third and fourth Hankel determinants of a subclass of analytic functions. Bull. Malays. Math. Sci. Soc. 2022, 45, 323–359. [Google Scholar] [CrossRef]
- Kwon, O.S.; Lecko, A.; Sim, Y.J. On the fourth coefficient of functions in the Carathéodory class. Comput. Methods Funct. Theory 2018, 18, 307–314. [Google Scholar] [CrossRef]
- Libera, R.J.; Złotkiewicz, E.J. Coefficient bounds for the inverse of a function with derivative in P, II. Proc. Am. Math. Soc. 1984, 92, 58–60. [Google Scholar]
- Seoudy, T.; Aouf, M.K. Fekete-Szegö problem for certain subclass of analytic functions with complex order defined by q-analogue of Ruscheweyh Operator. Constr. Math. Anal. 2020, 3, 36–44. [Google Scholar] [CrossRef]
- Baksa, V.; Bandura, A.; Skaskiv, O. Growth estimates for analytic vector-valued functions in the unit ball having bounded L-index in joint variables. Constr. Math. Anal. 2020, 3, 9–19. [Google Scholar]
- Aouf, M.K.; Seoudy, T. Certain class of bi-Bazilevic functions with bounded boundary rotation involving Salăgeăn Operator. Constr. Math. Anal. 2020, 3, 139–149. [Google Scholar]
- Srivastava, H.M.; Wanas, A.K.; Güney, H.Ö. New families of bi-univalent functions associated with the Bazilevič functions and the λ-pseudo-starlike functions. Iran. J. Sci. Technol. Trans. A Sci. 2021, 45, 1799–1804. [Google Scholar] [CrossRef]
- Kowalczyk, B.; Lecko, A. Second Hankel determinant of logarithmic coefficients of convex and starlike functions. Bull. Aust. Math. Soc. 2022, 105, 458–467. [Google Scholar] [CrossRef]
- Sunthrayuth, P.; Aldawish, I.; Arif, M.; Abbas, M.; El-Deeb, S. Estimation of the second-order Hankel determinant of logarithmic coefficients for two subclasses of starlike functions. Symmetry 2022, 14, 2039. [Google Scholar] [CrossRef]
- Sümer Eker, S.; Şeker, B.; Çekiç, B.; Acu, M. Sharp bounds for the second Hankel determinant of logarithmic coefficients for strongly starlike and strongly convex functions. Axioms 2022, 11, 369. [Google Scholar] [CrossRef]
- Sim, Y.J.; Lecko, A.; Thomas, D.K. The second Hankel determinant for strongly convex and Ozaki close-to-convex functions. Ann. Mat. Pura Appl. (1923-) 2021, 200, 2515–2533. [Google Scholar] [CrossRef]
- Kowalczyk, B.; Lecko, A.; Thomas, D.K. The sharp bound of the third Hankel determinant for starlike functions. Forum Math. 2022, 34, 1249–1254. [Google Scholar] [CrossRef]
- Kwon, O.S.; Lecko, A.; Sim, Y.J. The bound of the Hankel determinant of the third kind for starlike functions. Bull. Malays. Math. Sci. Soc. 2019, 42, 767–780. [Google Scholar] [CrossRef] [Green Version]
- Zaprawa, P.; Obradović, M.; Tuneski, N. Third Hankel determinant for univalent starlike functions. Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. 2021, 115, 1–6. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, L.; Arif, M. Certain Sharp Coefficient Results on a Subclass of Starlike Functions Defined by the Quotient of Analytic Functions. Fractal Fract. 2023, 7, 195. https://doi.org/10.3390/fractalfract7020195
Shi L, Arif M. Certain Sharp Coefficient Results on a Subclass of Starlike Functions Defined by the Quotient of Analytic Functions. Fractal and Fractional. 2023; 7(2):195. https://doi.org/10.3390/fractalfract7020195
Chicago/Turabian StyleShi, Lei, and Muhammad Arif. 2023. "Certain Sharp Coefficient Results on a Subclass of Starlike Functions Defined by the Quotient of Analytic Functions" Fractal and Fractional 7, no. 2: 195. https://doi.org/10.3390/fractalfract7020195
APA StyleShi, L., & Arif, M. (2023). Certain Sharp Coefficient Results on a Subclass of Starlike Functions Defined by the Quotient of Analytic Functions. Fractal and Fractional, 7(2), 195. https://doi.org/10.3390/fractalfract7020195