Application of Fractal to Evaluate the Drying Shrinkage Behavior of Soil Composites from Recycled Waste Clay Brick
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials Used in Laboratory Testing
2.2. Dry Cracking Test of Composite Soil Sample
2.3. Image Processing and Calculation of Related Parameters
2.3.1. Fractal Dimension
2.3.2. Probability Entropy of Crack
2.3.3. Crack Ratio
3. Results
3.1. Fractal Characteristics of Cracks
3.2. Crack Development Characteristics (Probability Entropy of Crack)
3.3. Effect of Water Content on Crack Development
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mandelbrot, B.B. The Fractal Geometry of Nature; W.H. Freeman: New York, NY, USA, 1982. [Google Scholar]
- Sun, J.J.; Ji, Z.B.; Zhang, Y.Y.; Yu, Q.P.; Ma, C.B. A Contact Mechanics Model for Rough Surfaces Based on a New Fractal Characterization Method. Int. J. Appl. Mech. 2018, 10, 18500692. [Google Scholar] [CrossRef]
- Ma, J.H.; Liu, D.X.; Chen, Y.Q. Random Fractal Characters and Length Uncertainty of the Continental Coastline of China. J. Earth Syst. Sci. 2016, 125, 1615–1621. [Google Scholar] [CrossRef] [Green Version]
- Zhao, X.; Cai, H.; Zhou, T.; Liu, L.; Ding, Y. Research on the factors affecting the development of shrinkage cracks of rammed earth buildings. Earthq. Struct. 2021, 20, 365–375. [Google Scholar]
- Li, L.; Zhang, Y.; Shi, Y.; Xue, Z.; Cao, M. Surface cracking and fractal characteristics of cement paste after exposure to high temperatures. Fractal Fract. 2022, 6, 465. [Google Scholar] [CrossRef]
- Khamidulina, D.D.; Nekrasova, S.A. Fractals in construction material science. IOP Conf. Ser. Mater. Sci. Eng. 2018, 451, 012026. [Google Scholar] [CrossRef]
- Ding, C.; Xu, T.; Chen, Q.; Su, C.; Zhao, P. Study on the Relationship between Fractal Characteristics and Mechanical Properties of Tensile Fracture of Reinforced Concrete Structures. KSCE J. Civ. Eng. 2022, 26, 2225–2233. [Google Scholar] [CrossRef]
- Li, W.; Wu, M.; Shi, T.; Yang, P.; Pan, Z.; Liu, W.; Liu, J.; Yang, X. Experimental Investigation of the Relationship between Surface Crack of Concrete Cover and Corrosion Degree of Steel Bar Using Fractal Theory. Fractal Fract. 2022, 6, 325. [Google Scholar] [CrossRef]
- Tang, C.S.; Cui, Y.J.; Shi, B.; Tang, A.M.; Liu, C. Desiccation and cracking behaviour of clay layer from slurry state under wetting–drying cycles. Geoderma 2011, 166, 111–118. [Google Scholar] [CrossRef] [Green Version]
- Yao, J.; Chen, J.; Lu, C. Fractal cracking patterns in concretes exposed to sulfate attack. Materials 2019, 12, 2338. [Google Scholar] [CrossRef] [Green Version]
- Shit, P.K.; Bhunia, G.S.; Maiti, R. Soil crack morphology analysis using image processing techniques. Model. Earth Syst. Environ. 2015, 1, 35. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Zhang, Z.Y.; Liu, Y.; Fan, S.M. Geometric and fractal analysis of dynamic cracking patterns subjected to wetting-drying cycles. Soil Tillage Res. 2017, 170, 1–13. [Google Scholar] [CrossRef]
- Gopal, P.; Bordoloi, S.; Cai, W.L.; Liang, H.S.; Boddu, R.; Sreedeep, S.; Buragohain, P.; Garg, A. Model Development for Computing Cracking in Soil Reinforced with Fibers from Three Different Bioresources. Adv. Civ. Eng. Mater. 2018, 7, 669–693. [Google Scholar] [CrossRef]
- Lu, Y.; Gu, K.; Shen, Z.T.; Wang, X.; Zhang, Y.P.; Tang, C.S.; Shi, B. Effects of biochar particle size and dosage on the desiccation cracking behavior of a silty clay. Sci. Total Environ. 2022, 837, 155788. [Google Scholar] [CrossRef]
- Vail, M.; Zhu, C.; Tang, C.S.; Maute, N.; Montalbo-Lomboy, M.T. Desiccation Cracking Behavior of Clayey Soils Treated with Biocement and Bottom Ash Admixture during Wetting-Drying Cycles. Transp. Res. Rec. 2020, 2674, 441–454. [Google Scholar] [CrossRef]
- Bordoloi, S.; Gopal, P.; Boddu, R.; Wang, Q.H.; Cheng, Y.F.; Garg, A.; Sreedeep, S. Soil-biochar-water interactions: Role of biochar from Eichhornia crassipes in influencing crack propagation and suction in unsaturated soils. J. Clean. Prod. 2019, 210, 847–859. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, K.X.; Gan, L.; Liu, J.Q.; Mei, G.X. Expansive soil-biochar-root-water-bacteria interaction: Investigation on crack development, water management and plant growth in green infrastructure. Int. J. Damage Mech. 2021, 30, 595–617. [Google Scholar] [CrossRef]
- Jin, L.C.; Zhang, S.; Xu, Y.J. Fractal Dimension Characteristics of the Soil Cracking Process When Saline-Alkali Soil Is Mixed with Hippophae Roots. Fractal Fract. 2022, 6, 504. [Google Scholar] [CrossRef]
- Gui, Y.L.; Wong, W.Y.; Gallage, C. Effectiveness and Sensitivity of Fiber Inclusion on Desiccation Cracking Behavior of Re-inforced Clayey Soil. Int. J. Geomech. 2022, 22, 06021040. [Google Scholar] [CrossRef]
- Yang, Q.C.; Cheng, W.J.; Hao, Z.; Zhang, Q.; Yang, D.X.; Teng, D.; Zhang, Y.; Wang, X.M.; Shen, H.X.; Lei, S.Y. Study on the Fractal Characteristics of the Plant Root System and Its Relationship with Soil Strength in Tailing Ponds. Wirel. Commun. Mob. Comput. 2022, 9499465. [Google Scholar] [CrossRef]
- Fang, H.Q.; Ding, X.M.; Jiang, C.Y.; Peng, Y.; Wang, C.Y. Effects of layer thickness and temperature on desiccation cracking characteristics of coral clay. Bull. Eng. Geol. Environ. 2022, 81, 391. [Google Scholar] [CrossRef]
- Li, S.; Chen, G.; Xu, Z.; Luo, X.; Gao, J. Particle-size effect of recycled clay brick powder on the pore structure of blended cement paste. Constr. Build. Mater. 2022, 344, 128288. [Google Scholar] [CrossRef]
- Wong, C.L.; Mo, K.H.; Yap, S.P.; Alengaram, U.J.; Ling, T.C. Potential use of brick waste as alternate concrete-making mate-rials: A review. J. Clean. Prod. 2018, 195, 226–239. [Google Scholar] [CrossRef]
- Li, F.; Chen, J.L.; Zhao, X.Y.; Hou, N.S. Experiment Research on the Use of Recycled Brick Aggregate in Concrete Tiles. Ad-Vanced Mater. Res. 2011, 374–377, 1912–1915. [Google Scholar] [CrossRef]
- Letelier, V.; Ortega, J.M.; Munoz, P.; Tarela, E.; Moriconi, G. Influence of Waste Brick Powder in the Mechanical Properties of Recycled Aggregate Concrete. Sustainability 2018, 10, 1037. [Google Scholar] [CrossRef] [Green Version]
- Fort, J.; Cerny, R. Transition to circular economy in the construction industry: Environmental aspects of waste brick recycling scenarios. Waste Manag. 2020, 118, 510–520. [Google Scholar] [CrossRef] [PubMed]
- Shin, H.; Santamarina, J.C. Desiccation cracks in saturated fine-grained soils: Particle-level phenomena and effective-stress analysis. Geotechnique 2011, 61, 961–972. [Google Scholar] [CrossRef]
- Zeng, H.; Tang, C.S.; Cheng, Q.; Zhu, C.; Yin, L.Y.; Shi, B. Drought-Induced Soil Desiccation Cracking Behavior with Consideration of Basal Friction and Layer Thickness. Water Resour. Res. 2020, 56, e2019WR026948. [Google Scholar] [CrossRef]
- Shannon, C.E. A Mathematical Theory of Communication. Bell Syst. Tech. J 1948, 27, 379–423. [Google Scholar] [CrossRef] [Green Version]
- Kapur, J.N.; Sahoo, P.K.; Wong, A.K.C. A new method for gray-level picture thresholding using the entropy of the histogram. Comput. Vis. Graph. Image Process. 1985, 29, 273–285. [Google Scholar] [CrossRef]
- Preston, S.; Griffiths, B.S.; Young, I.M. An investigation into sources of soil crack heterogeneity using fractal geometry. Eur. J. Soil Sci. 1997, 48, 31–37. [Google Scholar] [CrossRef]
- Luo, Y.; Zhang, J.M.; Zhou, Z.; Shen, Z.J.; Chong, L.; Victor, C. Investigation and prediction of water infiltration process in cracked soils based on a full-scale model test. Geoderma 2021, 400, 115111. [Google Scholar] [CrossRef]
- Wang, L.; Yu, Z.; Liu, B.; Zhao, F.; Tang, S.; Jin, M. Effects of Fly Ash Dosage on Shrinkage, Crack Resistance and Fractal Characteristics of Face Slab Concrete. Fractal Fract. 2022, 6, 335. [Google Scholar] [CrossRef]
Density g/cm3 | Natural Moisture Content (%) | Liquid Limit (%) | Plastic Limit (%) | Plasticity Index (%) | Particle Distribution (%) | ||
---|---|---|---|---|---|---|---|
Clay | Silt | Sand | |||||
2.61 | 21.3 | 35.5 | 18.5 | 17 | 21 | 74 | 2 |
Test No. | Mass of Soil Samples | Percentage of Waste Brick Micro-Powder | Note | |
---|---|---|---|---|
Clay (g) | Waste Brick Micro-Powder (g) | |||
0-0, 1-0 | 50 | 0 | 0% | Initial water Content 100% |
0-3, 1-3 | 48.5 | 1.5 | 3% | |
0-5, 1-5 | 47.5 | 2.5 | 5% | |
0-7, 1-7 | 46.5 | 3.5 | 7% | |
0-9, 1-9 | 45.5 | 4.5 | 9% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, X.; Li, L.; Yang, B.; Yang, C. Application of Fractal to Evaluate the Drying Shrinkage Behavior of Soil Composites from Recycled Waste Clay Brick. Fractal Fract. 2023, 7, 25. https://doi.org/10.3390/fractalfract7010025
Zhao X, Li L, Yang B, Yang C. Application of Fractal to Evaluate the Drying Shrinkage Behavior of Soil Composites from Recycled Waste Clay Brick. Fractal and Fractional. 2023; 7(1):25. https://doi.org/10.3390/fractalfract7010025
Chicago/Turabian StyleZhao, Xiaozheng, Lingchen Li, Binbin Yang, and Changde Yang. 2023. "Application of Fractal to Evaluate the Drying Shrinkage Behavior of Soil Composites from Recycled Waste Clay Brick" Fractal and Fractional 7, no. 1: 25. https://doi.org/10.3390/fractalfract7010025
APA StyleZhao, X., Li, L., Yang, B., & Yang, C. (2023). Application of Fractal to Evaluate the Drying Shrinkage Behavior of Soil Composites from Recycled Waste Clay Brick. Fractal and Fractional, 7(1), 25. https://doi.org/10.3390/fractalfract7010025